UNIX and ANSI Standards

Since the invention of UNIX in the late 1960s, there has been a proliferation of differ-
ent versions of UNIX on different computer systems. Recent UNIX systems have developed
from AT&T System V and BSD 4.x UNIX. However, most computer vendors often add their
own extensions to either the AT&T or BSD UNIX on their systems, thus creating the differ-
ent versions of UNIX. In late 1980, AT&T and Sun Microsystems worked together to create
the UNIX System V release 4, which is an attempt to set a UNIX system standard for the
computer industry. This attempt was not totally successful, as only a few computer vendors
today adopt the UNIX System V.4.

However, in the late 1980s, a few organizations proposed several standards for a UNIX-
like operating system and the C language programming environment. These standards are
based primarily on UNIX, and they do not impose dramatic changes in vendors’ systems;
thus, they are easily adopted by vendors. Furthermore, two of these standards, ANSI C and
POSIX (which stands for Portable Operating System Intzrface), are defined by the American
National Standard Institute (ANSI) and by the Institute of Electrical and Electronics Engi-
neers (IEEE). They are very influential in setting standards in the industry; thus, most com-
puter vendors today provide UNIX systems that conform to the ANSI C and POSIX.1 (a

subset of the POSIX standards) standards.

Most of the standards define an operating system environment for C-based applica-
tions. Applications that adhere to the standards should be easily ported to other systems that
conform to the same standards. This is especially important for advanced system program-
mers who make extensive use of system-level application program interface (API) functions
(which include library functions and system calls). This is because not all UNIX systems pro-

1

Chap. 1. The ANSI C Standard

vide a uniform set of system APIs. Furthermore, even some common APIs may be imple-
mented differently on different UNIX systems (e.g., the fcntl API on UNIX System V can be
used to lock and unlock files, something that the BSD UNIX version of fentl API does not
support). The ANSI C and POSIX standards require all conforming systems to provide a uni-
form set of standard libraries and system APIs, respectively; the standards also define the sig-
natures (the data type, number of arguments, and return value) and behaviors of these
functions on all systems. In this way, programs that use these functions can be ported to dif-
ferent systems that are compliant with the standards. '

Most of the functions defined by the standards are a subset of those available on most
UNIX systems. The ANSI C and POSIX committees did create a few new functions on their
own. but the purpose of these functions is to supplement ambiguity or deficiency of some
related constructs in existing UNIX and C. Thus, the standards are easily learned by experi-
enced UNIX and C developers, and easily supported by computer vendors.

The objective of this book is to help familiarize users with advanced UNIX system pro-
gramming techniques, including teaching users how to write portable and easily maintainable
codes. This later objective can be achieved by making users familiar with the functions
defined by the various standards and with those available from UNIX so that users can make
an intelligent choice of which functions or APIs to use.

The rest of this chapter gives an overview of the ANSI C, draft ANSI/ISO C++, and the
POSIX standards. The subsequent chapters describe the functions and APIs defined by these
standards and others available from UNIX in more detail.

1.1 The ANSI C Standard

In 1989, the American National Standard Institute (ANSI) proposed C programming
language standard X3.159-1989 to standardize the C programming language constructs and
libraries. This standard is commonly known as the ANSI C standard, and it attempts to unify

 the implementation of the C language supported on all computer systems. Most computer
vendors today still support the C language constructs and libraries as proposed by Brian Ker-
nighan and Dennis Ritchie (commonly known as K&R C) as default, but users may install the
ANSI C development package as an option (for an extra fee).

The major differences between ANSI C and K&R C are as follows:

* Function prototyping

* Support of the const and volatile data type qualifiers

* Support wide characters and internationalization

* Permit function pointers to be used without dereferencing

Chap. 1. The ANSI C Standard

Although this book focuses on the C++ programming technique, readers still need to be
familiar with the ANSI C standard becanse many standard C library functions are not covered
by the C++ standard classes, thus almost all C++ programs call one or more standard C
library functions (e.g., get time of day, or use the strlen function, etc.). Furthermore, for some
readers who may be in the process of porting their C applications to C++, this section
describes some similarities and differences between ANSI C and C++, 50 as to make it easy
for those users to transit from ANSI C to C++.

~ ANSI C adopts C++ function prototype technique where function definition and decla-
ration include function names, arguments’ data types,-and return value data types. Function
prototypes enable ANSI C compilers to check for function calls in user programs that pass
invalid numbers of arguments or incompatible argument data types. These fix a major weak-
ness of the K&R C compilers: Invalid function calls in user programs often pass compilation
but cause programs to crash when they are executed.

The following example declares a function foo and requires that foo take two argu-
ments: the first argument fint is of char* data type, and the second argument is of double data
type. The function foo retumns an unsigned long value:

unsigned long foo (char* fmt, double data)

{
/* body of foo */

}

To create a declaration of the above function, a user simply takes the above function
definition, strips off the body section, and replaces it with a semicolon character. Thus, the
external declaration of the above function fro is:

unsigned long foo (char* fmt, double data);

For functions that take a variable number of arguments, their definitions and declara-
tions should have “...” specified as the last argument to each function:

int printf(const char* fmt, ...);

int printf(const char* fmt, ...)

{
1* body of printf */

}

The const key word declares that some data carnot be changed. For example, the above
function prototype declares a fmt argument that is of a const char* data type, meaning that the

3

Chap. 1. The ANSI C Standard

function printf cannot modify data in any character array that is passed as an actual argument
value to fnt.

The volatile key word specifies that the values of some variables may change asyn-
chronously, giving a hint to the compiler’s optimization algorithm not to remove any “redun-
dant” statements that involve “volatile” objects. For example, the following statements define
an io_Port variable that contains an address of an I/O port of a system. The two statements
that follow the definition are to wait for two bytes of data to arrive from the VO port and
retain only the second byte of data’

char get_io()

{

volatile char* io_Port = 0x7777;

char ch = *io_Port; /* read first byte of data */

ch = *io_Port; /* read second byte of data */
}

In the above example, if the io_Port variable is not declared to be “volatile,” when the
program is compiled, the compiler may eliminate the second ch = *io_Port statement, as it is
considered redundant with respect to the previous statement.

The const and volatile data type qualifiers are also supported in C++.

ANSI C supports internationalization by allowing C programs to use wide characters.
Wide characters use more than one byte of storage per character. These are used in countries
where the ASCII character set is not the standard. For example, the Korean character set
requires two bytes per character. Furthermore, ANSI C also defines the setlocale function,
which allows users to specify the format of date, monetary, and real number representations.
For example, most countries display the date in <day>/<month>/<year> format, whereas the
US displays the date in <month>/<day>/<year> format.

The function prototype of the setlocale function is:

#include <locale.h>

char setlocale (int category, const char* locale);

The setlocale function prototype and possible values of the category argument are
declared in the <locale.h> header. The category values specify what format class(es) is to be
changed. Some possible values of the category argument are:

Chap. 1. The ANSI C Standard

category value Effect on standard C functions/macros

LC_CTYPE Affects the behaviors of the <ctype.h> macros

LC_TIME Affects the date and time format as returned by the
strftime, ascftime functions, etc.

L.C_NUMERIC Affects the number representation formats via the
printf and scanf functions

LC_MONETARY Affects the monetary value format returned by the
localeconv function

LC_ALL Combines the effects of all the above

The locale argument value is a character string that defines which locale to use. Possi-
ble values may be C, POSIX, en_US, etc. The C, POSIX, en_US locales refer to the UNIX,
POSIX, and US locales. By default, all processes on an ANSI C or POSIX compliant system
execute the equivalent of the following call at their process start-up time:

~ setlacale(LC_ALL, “C");

Thus, all processes start up have a known locale. If a locale value is NULL, the setlo-
cale function returns the current locale value of a calling process. If a locale value is **“ (a
null string), the setlocale function looks for an environment variable LC_ALL, an environ-
ment variable with the same name as the category argument value, and, finally, the LANG
environment variable - in that order - for the value of the locale argument.

The setlocale function is an ANSI C standard that is also adopted by POSIX.1.

ANSI C specifies that a function pointer may be used like a function name. No derefer-
ence is needed when calling a function whose address is contained in the pointer. For exam-
ple, the following statements define a function pointer funcptr, which contains the address of
the function foo:

extern void foo (double xyz, const int* Iptr);
void (*funcptr)(double, const int*).= foo;

The function foo may be invoked by either directly calling foo or via the funcptr. The
following two statements are functionally equivalent:

foo (12.78, “Hello world”);
funcptr (12.78, “Hello world”);

Chap. 1. The ANSI C Standard

The K&R C requires funcptr be dereferenced to call foo. Thus, an equivalent statement
to the above, using K&R C syntax, is:

(*funcptr)(12.78, “Hello world");
Both the ANSI C and K&R C function pointer uses are supported in C++.

‘In addition to the above, ANSI C also defines a set of cpp (C preprocessor) symbols
which may be used in user programs. These symbols are assigned actual values at compile
time:

cpp symbol : Use -

__STDC__ Feature test macro. Value is 1 if a compiler is
ANSI C conforming, 0 otherwise

_LINE__ Evaluated to the physical line number of a source
file for which this symbol is reference

_FILE__ Value is the file name of a module that contains
this symbol

_ DATE___ Value is the date that a module containing this
symbol is compiled

_TIME__ Value is the time that a module containing this

symbol is compiled

The following test_ansi_c.c program illustrates uses of these symbols:

#include <stdio.h>
int main()
{
#if __ STDC__ ==
printf(“cc is not ANSI C compliant\n”);
#else
printf(“ %s compiled at %s:%s. This statement is at line %d\n”,
__FILE_ ,__DATE__, _TIME__, _ LINE_);
#endif
return O;

}

Note that C++ supports the __LINE__, _FILE__, __DATE__, and __TIME__ sym-
bols, but not __STDC__.

Chap. 1. The ANSI/ISO C++ Standard

Finally, ANSI C defines a set of standard library functions and associated headers.
These headers are the subset of the C libraries available on most systems that implement
K&R C. The ANSI C standard libraries are described in Chapter 4. ' e

1.2 The ANSI/ISO C++ Standard

In early 1980s, Bjarne Stroustrup at AT&T Bell Laboratories developed the C++ pro-
gramming language. C++ was derived from C and incorporated object-oriented constructs,
such as classes, derived classes, and virtual functions, from simula67 [1].The objective of
developing C++ is “to make writing good programs earlier and more pleasant for individual
programmer” [2]. The name C++ signifies the evolution of the language from C and was
coined by Rick Mascitti in 1983

Since its invention, C++ has gained wide acceptance by software professionals. In
1989, Bjame Stroustrup published The Annotated C++ Reference Manual [3]. This manual
became the base for the draft ANSI C++ standard, as developed by the X3J16 committee of
ANSI. In early 1990s, the WG21 committee of the International Standard Organization (ISO)
joined the ANSI X3J16 committee to develop a unify ANSI/ISO C++ standard. A draft ver-
sion of such a ANSI/ISO standard was published in 1994 [4]. However, the ANSIISO stan-
dard is still in the development stage, and it should become an official standard in the near
future.

Most latest commercial C++ compilers, which are based on the AT&T C++ language
version 3.0 or later, are compliant with the draft ANSI/ISO standard. Specifically, these com-
pilers should support C++ classes, derived classes, virtual functions, operator overloading.
Furthermore, they should also support template classes, template functions, exception han-
dling, and the iostream library classes.

This book will describe the C++ language features as defined by the draft ANSI/ISO
C++ standard.

1.3 Differences Between ANSI C and C++

C++ requires that all functions must be declared or defined before they can be refer-
enced. ANSI C uses the K&R C default function declaration for any functions that are refer-
enced before their declaration and definition in a user program.

Another difference between ANSI C and C++ is given the following function declara-
" tion:

int foo ();

Chap. 1. The POSIX Standards

ANSI C treats the above function as an old C function declaration and interprets it as
declared in the following manner:

int foo (...);

which means foo may be called with any number of actual arguments. However, for C++, the
same declaration is treated as the following declaration:

int foo (void);
which means foo may not accept any argument when it is called.

Finally, C++ encrypts external function names for type-safe linkage. This ensures that
an external function which is incorrectly declared and referenced in a module will cause the
link editor (/bin/Id) to report an undefined function name: ANSI C does not employ the type-
safe linkage technique and, thus, does not catch these types of user errors.

There are many other differences between ANSI C and C++, but the above items z{re
the more common ones run into by users (For a detailed documentation of the ANSI C stan-
dard, please see [5]).

The next section describes the POSIX standards, which are more elaborate and com-
prehensive than are the ANSI C standard for UNIX system developers.

1.4 The POSIX Standards

Because many versions of UNIX exist today and each of them provides its own set of
application programming interface (API) functions, it is difficult for system developers to
create applications that can be easily ported to different versions of UNIX. To overcome this
problem, the IEEE society formed a special task force called POSIX in the 1980s to create a
set of standards for operating system interfacing. Several subgroups of the POSIX such as
POSIX.1, POSIX.1b and POSIX. ¢ are concerned with the development of a set of standards
for system developers.

Specifically, the POSIX.1 committee proposes a standard for a base operating system
application programming interface; this standard specifies APIs for the manipulation of files
and processes. It is formally known as the IEEE standard 1003.1-1990 [6], and it was also
adopted by the ISO as the international standard ISO/IEC 9945:1:1990. The POSIX.1b com-
mittee proposes a set of standard APIs for a real-time operating system interface; these
include interprocess communication. This standard is formally known as the IEEE standard

8

Chap. 1. The POSIX Standards

1003.4-1993 [7]. Lastly, the POSIX.1c standard [8] specifies multithreaded programming
interface. This is the newest POSIX standard and its details are described in the last chapter
of this book.

Although much of the work of the POSIX committees is based on UNIX, the standards
they proposed are for a generic operating system that is not necessarily a UNIX system. For
example, VMS from the Digital Equipment Corporation, OS/2 from International Business
Machines, and Windows-NT from the Microsoft Corporation are POSIX-compliant, yet they
are not UNIX systems. Most current UNIX systems, like UNIX System V release 4, BSD
UNIX 4.4, and computer vendor-specific operating systems (e.g., Sun Microsystem’s Solaris
2.x, Hewlett Packard’s HP-UX 9.05 and 10.x, and IBM’s AIX 4.1.x, etc.) are all POSIX.1-
compliant but they still maintain their system-specific APls.

This book will discuss the POSIX.1, POSIX.1b and POSIX.1c APIs, and also UNIX
system-specific APIs. Furthermore, in the rest of the book, unless stated otherwise, when the
word POSIX is mentioned alone. it refers to both the POSIX.1 and POSIX.1b standards.

To ensure a user program conforms to the POSIX.1 standard, the user should either
define the manifested constant _POSIX_SOURCE at the beginning of each source module of
the program (before the inclusion of any headers) as: '

#define _POSIX_SOURCE
or specify the -D_POSIX_SOURCE option to a C++ compiler (CC) in a compilation:
% CC-D_POSIX_SOURCE *.C

This manifested constant is used by cpp to filter out all non-POSIX.1 and non-ANSI C
standard codes (e.g., functions, data types, and manifested constants) from headers used by
the user program. Thus, a user program that is compiled and run successfully with this switch
defined is POSIX.1-conforming.

POSIX.1b defines a different manifested constant to check conformance of user pro-
grams to that standard. The new macro is _POSIX_C_SOURCE, and its value is a time-
stamp indicating the POSIX version to which a user program conforms. The possible values
of the _POSIX_C_SOURCE macro are:

_POSIX_C_SOURCE value Meaning

198808L First version of POSIX.1 compliance
199009L Second version of POSIX.1 compliance
199309L POSIX.1 and POSIX.1b compliance

Chap.1. The POSIX Standards

Each _POSIX_C_SOURCE value consists of the year and month that a POSIX stan-
dard was approved by IEEE as a standard. The L suffix in a value indicates that the value's
data type is a long integer.

The _POSIX_C_SOURCE may be used in place of the _POSIX_SOURCE. However,
some systems that support POSIX.1 only may not accept the _POSIX_C_SOURCE defini-
tion. Thus, readers should browse the unistd.h header file on their systems and see which con-
stants, or both, are used in the file.

There is also a _POSIX_VERSION constant that may be defined in the <unistd.h>
header. This constant contains the POSIX version to which the system conforms. The follow-
ing sample program checks and displays the _POSIX_VERSION constant of the system on
which it is run:

/* show_posix_ver.C */
#define _POSIX_SOURCE
#define _POSIX_C_SOURCE 199309L
#include <iostream.h>
#include <unistd.h>
int main()
{
#ifdef _POSIX_VERSION
cout << “System conforms to POSIX: “
<< _POSIX_VERSION << endl;
#else
cout << “_POSIX_VERSION is undefined\n”;
#endif
return O;

In general, a user program that must be strictly POSIX.1- and POSIX.1b-compliant
may be written as follows:

#define _POSIX_SOURCE

#define _POSIX_C_SOURCE 199309L
#include <unistd.h>

/* include other headers here */

int main()

{

10

Chap. 1. The POSIX Standards

1.4.1 The POSIX Environment

Although POSIX was developed based on UNIX, a POSIX-compliant system is not
necessarily a UNIX system. A few UNIX conventions have different meanings, according to
the POSIX standards. Specifically, most standard C and C++ header files are stored under the
lusr/include directory in any UNIX system, and each of them is referenced by the:

#include <header_file_name>

This method of referencing header files is adopted in POSIX. However, for each name
specified in a #included statement, there need not be a physical file of that name existing on a
POSIX-conforming system. In fact the data that should be contained in that named object
may be builtin to a compiler, or stored by some other means on a given system. Thus, in a
POSIX environment, included files are called simply headers instead of header files. This
“headers” naming convention will be used in the rest of the book. Furthermore, in a POSIX-
compliant system, the /usr/include directory does not have to exist. If users are working on a
non-UNIX but POSIX-compliant system, please consult the C or C++ programmer’s manual
to determine the standard location, if any, of the headers on the system.

Another difference between POSIX and UNIX is the concept of superuser. In UNIX, a
superuser has privilege to access all system resources and functions. The superuser user ID is
always zero. However, the POSIX standards do not mandate that all POSIX-conforming sys-
tems support the concept of a superuser, nor does the user ID of zero require any special priv-
ileges. Furthermore, although some POSIX.1 and POSIX.1b APIs require the functions to be
executed in “special privilege,” it is up to an individual conforming system to define how a
“special privilege” is to be assigned to a process.

1.42 The POSIX Feature Test Macros

Some UNIX features are optional to be implemented on a POSIX-conforming system.
Thus, POSIX.1 defines a set of feature test macros, which, if defined on a system, means that
the system has implemented the corresponding features. '

These feature test macros, if defined, can be found in the <unistd.h> header. Their
names and uses are:

Feature test macro Effects if defined on a system
_POSIX_JOB_CONTROL The system supports the BSD-style job control
_POSIX_SAVED_IDS Each process running on the system keeps the

saved set-UID and set-GID, so that it can change
its effective user ID and group ID to those values
via the seteuid and setegid APIs, respectively

1

Chap. 1.

12

Feature test macro

_POSIX_CHOWN_RESTRICTED

_POSIX_NO_TRUNC

_POSIX_VDISABLE

The POSIX Standards

Effects if defined on a system

If the defined value is -1, users may change owner-
ship of files owned by them. Otherwise, only users
with special privilege may change ownership of
any files on a system. If this constant is undefined
in <unistd.h> header, users must use the pathconf
or fpathconf function (described in the next sec-
tion) to check the permission for changing owner-
ship on a per-file basis

If the defined value is -1, any long path name
passed to an APl is silently truncated to
NAME_MAX bytes; otherwise, an error is gener-
ated. If this constant is undefined in the <unistd.h>
header, users must use the pathconf or fpathconf
function to check the path name truncation option
on a per-directory basis

If the defined value is -1, there is no disabling char-
acter for special characters for all terminal device
files; otherwise, the value is the disabling character
value. If this constant is undefined in the
<unistd.h> header, users must use the pathconf or
Jpathconf function to check the disabling character
option on a per-terminal device file basis

The following sample program prints the POSIX-defined configuration options sup-
ported on any given system:

/* show_test_macros.C */

#define _POSIX_SOURCE
#define _POSIX_C_SOURCE 199309L

#include <iostream.h>
#include <unistd.h>

int main()

{

#ifdef _POSIX_JOB_CONTROL _
cout << “System supports job control\n”;

#else

cout << “System does not support job control\n”;

#endif

Chap. 1.

1.4.3

The POSIX Standards

#ifdef _POSIX_SAVED_IDS
cout << “System supports saved set-UID and saved set-GID\n”;
#else
cout << “System does not support saved set-UID and “
<< “ saved set-GID\n";
#endif

#ifdef _POSIX_CHOWN_RESTRICTED
cout << “chown_restricted option is: * <<
_POSIX_CHOWN_RESTRICTED << end|;
#else
cout << “System does not support chown_restricted option\n”;
#endif

#ifdef _POSIX_NO_TRUNC
cout << “Pathname trunc option is: “ << _POSIX_NO_TRUNC
<< endl;
#else
cout << “System does not support system-wide pathname”
<< “ trunc option\n”;
#endif

#ifdef _POSIX_VDISABLE
cout << “Disable char. for terminal files is: “
<< _POSIX_VDISABLE << end|;
#else
cout << “System does not support _POSIX_VDISABLE\n";

#endif
return O;

Limits Checking at Compile Time and at Run
Time

POSIX.1 and POSIX.1b define a set of system configuration limits in the form of man-
ifested constants in the <limits.h> header. Many of these limits are derived from the UNIX
- systems and they have the same manifested constant names as their UNIX counterparts, plus
the _POSIX_ prefix. For example, UNIX systems define the constant CHILD_MAX, which
specifies the maximum number of child processes a process may create at any one time. The
corresponding POSIX.1 constant is _POSIX_CHILD_MAX. The reason for defining these

13

Chap. 1.

The POSIX Standards

constants is that although most UNIX systems define a similar set of constants, their values
vary substantially from one UNIX system to another. The POSIX-defined constants specify
*the minimum values for these constants for all POSIX-conforming systems; thus, it facilitates
application programmers to develop programs that use these system configuration limits.

14

The following is a list of POSIX.1-defined constants in the <limits.h> header:

Compile time limit
_POSIX_CHILD_MAX
_POSIX_OPEN_MAX

_POSIX_STREAM_MAX

POSIX_ARG_MAX

_POSIX_NGROUP_MAX
_POSIX_PATH_MAX
_POSIX_NAME_MAX
_POSIX_LINK_MAX

_POSIX_PIPE_BUF

_POSIX_MAX_INPUT
_POSIX_MAX_CANON
_POSIX_SSIZE_MAX

_POSIX_TZNAME_MAX

Min. value
6

16

4096

255

14

512

255

255

32767

Meaning

Maximum number of child processes
that may be created at any one time by
a process

Maximum number of files that may be
opened simultaneously by a process
Maximum number of /O streams that
may be opened simultaneously by a
process

Maximum size, in bytes, of arguments
that may be passed to an exec function
call

Maximum number of supplemental
groups to which a process may belong

Maximum number of characters

allowed in a path name

Maximum number of characters

allowed in a file name

Maximum number of links a file may
have

Maximum size of a block of data that
may be atomically read from or written
to a pipe file

Maximum capacity, in bytes, of a ter-
minal’s input queue

Maximum size, in bytes, of a termi-
nal’s canonical input queue

Maximum value that can be stored in a
ssize_t-typed object

Maximum number of characters in a
time zone name

The following is a list of POSIX.1b-defined constants:

Chap. 1. . The POSIX Standards

Compile time limit Min. value Meaning

_POSIX_AIO_MAX 1 Number of simultaneous asynchronous
I’o

_POSIX_AIO_LISTIO_MAX 2 Maximum number of operations in one
listio

_POSIX_TIMER_MAX 32 Maximum number of timers that can
be used simultaneously by a process

_POSIX_DELAYTIMER_MAX 32 Maximum number of overruns allowed

‘ per timer ,

+ _POSIX_MQ_OPEN_MAX 2 Maximum number of message queues
that may be accessed simultaneously
per process

_POSIX_MQ_PRIO_MAX 2 Maximum number of message priori-
ties that can be assigned to messages

_POSIX_RTSIG_MAX 8 Maximum number of real-time signals

_POSIX_SIGQUEUE_MAX 32 Maximum number of real time signals
that a process may queue at any one
time

_POSIX_SEM_NSEMS_MAX 256 Maximum number of semaphores that
may be used simultaneously per pro-
cess

_POSIX_SEM_VALUE_MAX 32767 Maximum value that may be assigned

to a semaphore

Note that the POSIX-defined constants specify only the minimum values for some sys-
tem configuration limits. A POSIX-conforming system may be configured with higher values
for these limits. Furthermore, not all these constants must be specified in the <limits.h>
header, as some of these limits may be indeterminate or may vary for individual files.

To find out the actual implemented configuration limits system-wide or on individual
objects, one can use the sysconf, pathconf, and fpathconf functions to query these limits’ val-
ues at run time. These functions are defined by POSIX.1; the sysconfis used to query general
system-wide configuration limits that are implemented on a given system; pathconf and
fpathconf are used to query file-related configuration limits. The two functions do the same
thing; the only difference is that pathconf takes a file’s path name as argument, whereas
fpathconf takes a file descriptor as argument. The prototypes of these functions are:

#include <unistd.h>

long sysconf (const int limit_name);
long pathconf (const char* pathname, int flimit_name);
long fpathconf (const int fdesc, int flimit_name);

15

Chap 1.

16

The POSIX Standards

The limit_name argument value is a manifested constant as defined in the <unistd.h>
header. The possible values and the corresponding data returned by the sysconf function are:

Limit value
_SC_ARG_MAX

_SC_CHILD_MAX

_SC_OPEN_MAX
_SC_NGROUPS_MAX

_SC_CLK_TCK
_SC_JOB_CONTROL
_SC_SAVED_IDS
_SC_VERSION
_SC_TIMERS
_SC_DELAYTIMER_MAX
_SC_RTSIG_MAX
_SC_MQ_OPEN_MAX
_SC_MQ_PRIO_MAX
_SC_SEM_MSEMS_MAX
_SC_SEM_VALUE_MAX
_SC_SIGQUEUE_MAX

_SC_AIO_LISTIO_MAX
_SC_AIO_MAX

sysconf return data

Maximum size, in bytes, of argument values that
may be passed to an exec API call

Maximum number of child processes that may be
owned by a process simultaneously

Maximum number of opened files per process

Maximum number of supplemental groups per
process

The number of clock ticks per second.

The _POSIX_JOB_CONTROL value

The _POSIX_SAVED_IDS value

The _POSIX_VERSION value

The _POSIX_TIMERS value

Maximum number of overruns allowed per timer
Maximum number of real time signals
Maximum number of message queues per process
Maximum priority value assignable to a message
Maximum number of semaphores per process
Maximum value assignable to a semaphore

Maximum number of real time signals that a pro-
cess may queue at any one time

Maximum number of operations in one listio
Number of simultaneous asynchronous /O

As can be seen in the above, all constants used as a sysconf argument value have the
SC prefix. Similarly, the flimit_name argument value is a manifested constant defined in
the <unistd.h> header. These constants all have the _PC_ prefix. The following lists some of
these constants and their corresponding return values from either pathconf or fpathconf for a
named file object:

Limit value
_PC_CHOWN_RESTRICTED
_PC_NO_TRUNC

. _PC_VDISABLE

_PC_PATH_MAX
_PC_LINK_MAX
_PC_NAME_MAX
_PC_PIPE_BUF

pathconf return data

The _POSIX_CHOWN_RESTRICTED value
Return the _POSIX_NO*TR'UN C value

Return the _POSIX_VDISABLE value

Maximum length, in bytes, of a path name
Maximum number of links a file may have
Maximum length, in bytes, of a file name
Maximum size of a block of data that may be auto-

Chap. 1. The POSIX Standards

matically read from or written to a pipe file

_PC_MAX_CANON Maximum size, in bytes, of a terminal’s canonical
input queue

_PC_MAX_INPUT Maximum capacity, in bytes, of a terminal’s input
queue

These variables parallel their corresponding variables as defined on most UNIX sys-
tems (the UNIX variable names are the same as those of POSIX, but without the _POSIX_
prefix). These variables may be used at compile time, such as the following:

char pathname [_POSIX_PATH_MAX + 1];
for (int i=0; i < _POSIX_OPEN_MAX; i++)
close (i); ' // close all file descriptors

The following test_config.C program illustrates the use of sysconf, pathconf, and fpath-
conf:

#define _POSIX_SOURCE

#define _POSIX_C_SOURCE 199309L
#include <stdio.h>

#inciude <iostream.h>

#include <unistd.h>

int main()
{
int res;
if (res=sysconf(_SC_OPEN_MAX))==-1)
" perror(“sysconf”);

else cout << “OPEN_MAX: “ << res << endl;

if ((res=pathconf(“”",_PC_PATH_MAX))==-1)
perror(“pathconf”);
else cout << “Max path name: “ << (res+1) << end|;

if ((res=fpathoonf(0,__PC_CHOWN_RESTRICTED))==-1)
perror(“fpathconf”);
else
cout << “chown_restricted for stdin: “ << res << endl;
return 0;

17

Chap. 1. The POSIX.1 FIPS Standard

1.5 The POSIX.1 FIPS Standard

FIPS stands for Federal Information Processing Standard. The POSIX.1 FIPS standard
was developed by the National Institute of Standards and Technology (NIST, formerly, the
National Bureau of Standards), a department within the US Department of Commerce. The
latest version of this'standard, FIPS 151-1, is based on the POSIX.1-1988 standard. The
POSIX.1 FIPS standard is a guideline for federal agencies acquiring computer systems. Spe-
cifically, the FIPS standard is a restriction of the POSIX.1-1988 standard, and it requires the
following features to be implemented in all FIPS-conforming systems:

* Job control; the _POSIX_JOB_CONTROL symbol must be defined

* Saved set-UID and saved set-GID; the _POSIX_SAVED_IDS symbol must be
defined

* Long path name is not supported; the _POSIX_NO_TRUNC should be defined - its
value is not -1

e The _POSIX_CHOWN_RESTRICTED must be defined - its value is not -1. This
means only an authorized user may change ownership of files, system-wide

* The _POSIX_VDISABLE symbol must be defined - its value is not equal to -1

» The NGROUP_MAX symbol’s value must be at least 8

* The read and write API should return the number of bytes that have been transferred
after the APIs have been interrupted by signals

* The group ID of a newly created file must inherit the group.ID of its containing
directory

The FIPS standard is a more restrictive version of the POSIX.1 standard. Thus, a FIPS
151-1 conforming system is also POSIX.1-1988 conforming, but not vice versa. The FIPS
standard is outdated with respect to the latest version of the POSIX.1, and it is used primarily
by US federal agencies. This book will, therefore, focus more on the POSIX.1 standard than
on FIPS.

1.6 The X/Open Standards

The X/Open organization was formed by a group of European companies to propose a
common operating system interface for their computer systems. The organization published
the X/Open Portability Guide, issue 3 (XPG3) in 1989, and issug 4 (XPG4) in 1994. The port-
ability guides specify a set of common facilities and C application program interface func-
tions to be provided on all UNIX-based “open systems.” The XPG3 {9] and XPG4 [10] are
based on ANSI-C, POSIX.1, and POSIX.2 standards, with additional censtructs invented by
the X/Open organization. :

" 18

Chap. 1. Summary

In addition to the above, in 1993 a group of computer vendors (e.g., Hewlett-Packard,
International Business Machines, Novell, Open Software Foundation, and Sun Microsystems,
Inc.) initiated a project called Common Open Software Environment (COSE). The goal of the
project was to define a single UNIX programming interface specification that would be sup-
ported by all the vendors. This specification is known as Spec 1170 and has been incorporated
into XPG4 as part of the X/Open Common Application Environment (CAE) specifications.

The X/Open CAE specifications have a much broader scope than do the POSIX and
ANSI-C standards. This means applications that conform to ANSI-C and POSIX also con-
form to the X/Open standards, but not necessarily vice versa. Furthermore, though most com-
puter vendors and independent software vendors (ISVs) adopted POSIX and ANSI-C, some
of them have yet to conform to the X/Open standards. Thus, this book will focus primarily on
the common UNIX system programming interface and the ANSI-C and POSIX standards.
Readers may consult more detailed publications [4,5] for further information on the X/Open
CAE specifications.

1.7 Summary

This chapter gave an overview of the various standards that are applicable to UNIX sys-
tem programmers. The objective is to familiarize readers with these standards and to help
readers understand the benefits they provide. The details of these standards and their corre-
sponding functions and APIs, as provided on most UNIX systems, are described in the rest of
the book.

1.8 References

[11. 'O-]. Dahl, B.'Myrhaug, and K. Nygaard, SIMULA Common Base Language, 1970.

[2]. Bjarne Stroustrup, The C++ Programming Language, Second Edition, 1991.

[3]. Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual,
Addison-Wesley, 1990.

[4]. Andrew Koenig, Working Paper for Draft Proposed International Standard for
Information Systems -- Programming Language C++ (Committees: WG21/N0414,
X3J16/94-0025), 1994.

19

Chap. 1. References

[5]. American National Standard Institute, American National Standard for Information
Systems - Programming Language C, X3.159 - 1989, 1989.

[6]. Institute of Electrical and Electronics Engineers, Information Technology - Portable
Operating System Interface (POSIX) Part 1: System Application Program Interface
(API) [C language], IEEE 1003.1. 1990.

(71. Institute of Electrical and Electronics Engineers, Information Technology - Portable
Operating System Interface (POSIX) Part 1: System Application Program Interface
(API) [C language] - Amendment: Real-Time Extension, IEEE 1003.1b. 1993.

[8]. Institute of Electrical and Electronics Engineers, Information Technology - Portable
Operating System Interface (POSIX) Part 1: System Application Program Interface
(API) [C language] - Amendment: Thread Extension, IEEE 1003.1c. 1995.

[9]. X/Open, X/Open Portability Guide, Prentice Hall, 1989.

[10]. X/Open, X/Open CAE Specification, Issue 4, Prentice Hall, 1994.

20

C HAPTER

H

C++ Language Review

This chapter reviews the essential constructs of the C++ language, which is based on
the draft ANSIVISO C++ standard [1]. The readers are assumed to be familiar with the C++
language, at least at the beginner’s level. This chapter gives a quick review of the C++ pro-
gramming techniques, so as to refresh the reader’s memory. It also describes the template
classes and exception handling. These latter subjects are new features to the C++ language
and defined by the ANSI/ISO C++ standard. Readers who need a more detailed reference on
the C++ language programming may consult [2,3].

Besides describing the C++ language constructs, this chapter also covers the C++
standard /O classes and object-oriented design techniques. The standard /O classes are pow-
erful and rich in functionality. They essentially replace the C stream /O functions and the
strings function. It is important for readers to know these /O classes to maximize code reuse
and to reduce their application development time and costs.

Object-oriented programming techniques enable users to move from algorithmic pro-
gram designs to object-based program designs. When doing object-oriented programming,
users are more concerned with the types of objects that their programs have to deal with, the
properties of these objects, and how they interact with each other and with users. Object-ori-
ented programming techniques are valuable for database and GUI applications and are also
useful in encapsulating low-level network communication protocol to provide a higher level
interface for network-based application developers. The latter chapters in this book will show
how this is done.

21

Chap. 2. C++ Features for Object-Oriented Programming

2.1 C++ Features for Object-Oriented Programming

C++ supports class declarations. Classes are used to construct user-defined data types.
Each class encapsulates the data storage and legal operations of any object of that data type.
Thus, C++ programs spend less time in the traditional algorithmic design for their applica-
tions but put more effort in designing classes and management of class objects and their inter-
actions.

A class provides data hiding such that the internal data can be classified as “public,”
“private,” and “protected.” Class “public” data are accessible by any user functions which are
not defined inside the class. Class “private” data cannot be accessed by anyone except mem-
ber functions defined in the same class. Finally, class “protected” data are “private” to all user
functions, but “public” to all its own and subclasses’ member functions. The elaborate
scheme of classifying class data is to allow developers to control the access and manipulation
of class objects’ data. This prevents class objects’ data being changed anywhere in user pro-
grams. Furthermore, any changes to a class private and protected data will have minimum
impact on user functions. provided the member functions used to access those data remain
the same.

Furthermore, a class imposes a well-defined interface for objects of that type to interact
with the rest of the world. This allows users to change the internal implementation of any
class while maintaining the working order of the rest of the program (as long as the interface
of the class remains unchanged). This renders well-designed C++ programs that are easy to
maintain or change.

Another advantage of classes is that they promote code sharing. Specifically, a new
class may be “derived” from one or more existing classes, and the new class contains all the
data storage and functions of its derived class(es). Furthermore, the new class may define
additional data and functions that are unique to objects of that new type, and it may even
redefine the functions it inherits from its base class(es). Thus, class inheritance provides max-
imum flexibility in generating new classes that are similar, but not identical, to existing
classes.

Like other object-oriented languages, C++ supports constructor and destructor func-
tions for classes. These ensure that objects are properly initialized when created and that data
is cleaned up when being discarded. Moreover, C++ defines the new and delete operators for
objects to allocate and deallocate dynamic memory. However, unlike other object-oriented
languages, there is no built-in garbage collection to manage dynamic memory used by
objects, and constructor and destructor functions are not mandated for all defined classes.
These relaxations are done to reduce the overhead of C++ programs’ run-time performance
but require developers to be disciplined in crafting their programs.

ANSI/ISO C++ supports template classes and functions. These allow users to create
and debug some generic classes and functions. Once these are done, they may safely derive

22

Chap. 2. C++ Class Declaration

real classes and functions that work with different data types. This saves substantial program
development and debug time. In addition to this, C++ defines a formal method of exception
handling. This maintains consistent methods for all C++ applications to handle exceptions
that may occur in their programs.

All in all, object-oriented programming strives to achieve the following goals:

« Data abstraction to ensure a well-defined interface for all objects
« Class inheritance to promote code reuse

s Polymorphism such that classes derived from other classes may have different data
and functions

» Modeling of objects and their interactions after real-life situations

All the above objectives are supported by C++, and it is also backward-compatible with
C. Thus it allows C programmers to start using C++ with their C programs, then migrate
toward using C++ and object-oriented constructs in their programs at a pace at which they are
comfortable.

2.2 C++ Class Declaration

A C++ class represents an abstract data type. It consists of data members and functions.
These, in turn, may be classified as private, public, and protected. Private data members and
functions are accessible via the same class member functions only, whereas public data mem-
bers and functions are accessible by any other objects. These public data members and func-
tions form the external interface to the world for objects of the class. Protected data members
and functions are like their private counterparts but are also accessible to subclasses’ member
functions.

When a class data member or function is referenced anywhere outside the class decla-
ration, the “::” scope resolution operator should be used to qualified their names. Specifically,
the name appearing on the left of the “::” operator is a class name, and the name appearing on
the right is a variable or function defined in the class. For example, menu::num_fields refers
to the num_fields data member of the class menu. In addition to this, if no name appears on
the left of a “::”, it means that the name specified on the right is a global variable or function.
For example, if there is a global variable called x, and in a class declaration there is also a
data member called x, the member functions of that class may reference the global variable x
by ::x, and the data member x by either x or <class_name>::x.

The following menu.h header declares a class called menu:

#ifndef MENU_H
#define MENU_H

23

Chap. 2.

24

class menu

{

private:

char* title;

protected:

static int num_fields;

public:

/I constructor function
menu(const char* str)

{

title = new char{strlen(str)+1];

strcpy (title, str);
num_fields = 0;

|3
// constructor function
menu()
{
title = 0;
num_fields = 0;
b
// destructor.function
~menu()
{
delete title;
X

void incr_field(int size=1)

{

num_fields+= size

|3
static int fields()
{
return num_fields;
b
char* name()
{
return title;
|3
|5
#endif /* menu.h */

C++ Class Declaration

Chap. 2. C++ Class Declaration

In the above, menu::num_fields and menu::fields() are declared as static. Unlike non-
static data members where each object of a class has its own private copy of those members,
there is only one instance of each static data member for all objects. Static data members are
used like global variables by all objects of the same type. The accessibility of static data
members by objects of other classes is determined by whether the data members are declared
as private, protected, or public.

Static data. members must be defined in one of the C source modules of a program if
they are being used in a program. For example, the following module defines the
menu::num_fields data member with an initial value of zero:

// module name: a.C

#include <string.h>

#include “menu.h”

int menu::num_fields = 0,

int main() {..o}

Note that in the above example, although menu::num_fields is a protected data member,
it is legal to define and initialize it in a program scope. However, further modification of that
variable in user programs must be done only via the menu class member functions, subclass
functions, or friend functions. The same also applies for private static data members.

Static member functions can access only static data members in a class. Thus in the
menu class, the menu. fields() cannot access the menu: :title data member. Whereas nonstatic
member functions must be called via objects of a class, static functions have no such restric-
tion:

menu abc (“Example”);

abc.incr_field(5);

cout << “static func. called independent of objects: “
<< menu::fields() << endl;

cout << “Static func. can also be called via object:
<< abe fields() << endl;

Static data members and functions are commonly used to track how many objects of a
class have been created as well as other general statistics, They can also be used to manage
dynamic memory created by all objects of a class and to do garbage collection.

The menu.::menu functions are constructors. A constructor function is called when an
object of a class is created, and it initializes the data members of a newly created object. A
constructor function may be overloaded, which means multiple constructor functions with

25

Chap. 2. C++ Class Declaration

different signatures may be defined in a same class. For example, the following object defini-
tions use different constructor functions:

menu abc; // use menu::menu()
menu xyz (“Example”); // use menu::menu(const char* str)

The menu()::~menu() is a destructor function. It is called when an object of a class is
going out of scope to ensure proper cleanup of the object’s data (e.g., deallocate dynamic
memory used by the object). A destructor function cannot be overloaded, and it accepts no
argument. :

In the menu class example, all member function definitions are placed in the class dec-
laration. This means these member functions are to be used as inline functions, or like mac-
ros, in C terminology. The advantage of using inline functions is to improve program
performance by eliminating the overhead of function calls. The disadvantage of inline func-
tions is that any changes made in an inline function require source modules that reference the
function to be recompiled.

A user may declare class member functions as non-inline by placing their definitions in
a separate source module. For example, menu.h may be changed to the following:

#ifndef MENU_H
#define MENU_H
class menu
{
private:
char* title;
protected:
static int num_fields;
public:
// constructor function
menu(const char* str);
menu();
// destructor function
~menu();
void incr_field(int size=1);
static int fields();
char* name() ;
b
#endif

26

Chap. 2. C++ Class Declaration

Then a separate C++ module, for example, menu.C, must be created to define the actual
member functions:

// source file name: menu.C
#include <string.h>

#include “menu.h”

// a constructor with an argument
menu::menu (const char” str)

{
title = new char[strlen(str)+1];
strcpy (title, str);
num_fields = 0;

}

// a constructor with no argument
menu::menu()
{
title = 0;
num_fields = 0;
}
{// a destructor
menu::~menu()
{
delete title;
}
// Note:the siz argument cannot have default value here
void menu::incr_field (int size)
{
num_fields += size;
}
// a static member function
int menu::fields()

{

return num_fields;

}

// another non-static member function.
char*menu:: name()

{

return title;

27

Chap. 2. Friend Functions and Classes

Any program that uses the menu class must be compiled with menu.C to create an exe-
cutable object. For example, given the following test_menu.C file:

/ source test_menu.C

#include <iostream.h>

#include “menu.h”

int menu::num_fields = 0;

int main()

{
menu abc (“Test”);
cout << abc.name() << endl;
return menu::fields();

the rest_menu.C is compiled as shown below to create an executable program a.out:

% CC test_menu.C menu.C
% a.out
Test

Finally, notice that the menu::incr_field function declaration in the menu.h has a default
value for the size argument, but in the menu.C file the menu: :incr_field function definition is
not allowed to specify a default value for the size argument. In C++ 1.0, this was allowed, but
it may lead to inconsistency in assigning default values to function arguments. Thus, this
practice is no longer allowed.

2.3 Friend Functions and Classes

The friend construct in C++ allows designated functions and member functions of other
classes to directly access private and protected data members of a class. This is for special
occasions where it is more efficient for a function to directly access an object’s private data
than to go through its class member function. For example, the << operator function is com-
monly declared as a friend function to classes so that one can print objects of these classes as
if they were of the basic data types (e.g., int, double).

Since friend functions can directly access and change private data of objects of a class,
the compiler must be told that these are special, authorized functions. Thus, their names must
be listed as friend in the class declaration. Furthermore, it serves as a reminder to users that
whenever the class declaration is changed, all of its friend functions may require modification
accordingly.

28

Chap. 2. Friend Functions and Classes

The following example illustrates the use of a friend function and a friend class:

// source module; friend.C

#include <iostream.h>

int year;

class foo;

class dates

{
friend ostream& operator<<(ostreamé&,dates&);
int year, month, day;

public:

friend class foo;
dates() { year=month=day = 0; };
~dates() {};
int sameDay(int d) const { return d==day; };
void set(int y) const { ::year =y; };
void set(inty) {year=y; };

|5
class foo
{
public:
void set(dates& D, int year) {D.year = year; };
|3
ostream& operator<<(ostreamé& os, dates& D)
{
o0s << D.year << " " << D.month <<" " << D.day;
return os;
}
int main()
{
dates Dobj;
foo Fobj;
Fobj.set(Dobj, 1998);
clog << "Dobj: * << Dobj << "\n’;
}

29

Chap. 2. . Const Member Functions

In the above example, the << operator and class foo ~re declared as friends of the class
dates. This means that the << function and class foo’s member functions can access the private
data members of any objects of class dates. The compilation and sample output of the program
is:

% CC friend.C
% a.out
Dobj: 1998, 0, 0

24 Const Member Functions

Const member functions are special member functions that cannot modify any data
members in their class. They are designed to accommodate class objects that are defined as
const. Specifically, a const object can invoke only its class’s const member functions. This
guarantees that the object’s data-is not being modified.

The C++ compiler flags an error when a const object invokes a nonconst member func-
tion. The only exception to this is that nonconst constructors and destructors may be applied
to const objects. Finally, const and nonconst member functions with the same signatures may
be overloaded.

The following example illustrates the definition of const member functions and their
usage:

// source module: const.C
static int year = 0;

class dates
{
int year, month, day;
public:
dates() { year=month=day = 0; };
~dates() {};

void set(inty) { year = y; };

// const member functions

void print(ostream& = cerr) const;

int sameDay(int d) const { return d==day; };
// note: this function is overloaded

void set(int y) const { ::year = y; };

Chap. 2. C++ Class |nheritance

void dates::print(ostream& os) const

{
0s << year << "," << month << " << day << \n’;

}

int main()

{ .
const dates foo; // const object
dates foo1; // non-const object
foo.set(1915); // ::year = 1915
foo.print(); // year=0, month=0, day=0
foo1.set(25), /1 foo1.year=25
foo1.print(); // year=25,month=0,day=0

}

In the above example, foo is a const object and fool is a nonconst object. Both objects
are initialized via the dates: :dates constructor. The foo.set(1 915) statement invokes the const
member function dates::set, whereas the fool.set(25) statement invokes the nonconst member
function dates::set. The foo.print() and fool.print() statements both invoke the const member
function dates::print. This is fine, as nonconst objects can always invoke const member func-
tions, but not vice versa.

The compilation and sample output of the program is:

% CC const.C

% a.out
0,0,0
25,0,0

2.5 C++ Class Inheritance

Class inheritance allows a class to be derived from one or more existing classes. The
new class is called a subclass, and the class(es) it derived from is called a base class or super
class.

A subclass inherits all data members and functions of its base class(es), and it may
access all protected and public data members and functions of its base class. Furthermore, a
subclass may define additional data members and functions that are unique to itself.

The following window.h header declares a window class, which is a subclass of menu:

#ifndef WINDOW_H

31

Chap. 2. C++ Class Inheritance

#define WINDOW_H
#include “menu.h”
#include <iostream.h>
class window : public menu
{
private:
int xcord, ycord,;
public:
// constructor function
window(const int x, const int y, const char* str) : menu(str)
{
xcord = x;
ycord = y;
|3
// destructor
~window() {};
// window-specific function
void show (ostream& os)
{
0s << xcord <<, << ycord << “ => “ << name() << éndl;
%
|5
#endif

In a subclass declaration, a base class name may be preceded by a “public” or “private”
key word, which means that the base class public data members and functions are to be
treated as “public” or “private,” respectively, in the subclass. If no such key word is specified,
the default is “private.”

A subclass member function can directly access only the protected and public data
members of its base class(es). A subclass can explicitly mark selected “public” or “protected”
data members and/or functions of “private” base classes to be “public” or “protected,” respec-
tively, in the subclass.

For example, the following class window2 makes all the menu data members and func-
tions it inherits private except the menu::num_fields, which is treated as protected in this sub-
class:

class window?2 : private menu

{

private:

Chap. 2. C++ Class Inheritance

int xcord, ycord;
protected:

menu::num_fields; // make menu::num_field protected
public:

When an object of a subclass is defined, the calling sequence of the subclass and base
class(es) constructor function is in the order showrf below:

« Base class constructors, in the order listed in the subclass declaration
+ Data member constructors, in the order dzclared in the subclass
» Subclass constructors

For example, given the following subclass declaration:

class a, b;
class base1, base2;
class sub : public base1, private base2

{

avari;
b var2;
public:

b

sub foo;

the invocation order of constructor functions for the variable foo is: basel::basel,
base2:-base2, a::a, b::b, and, finally, sub::sub.

When an object of a subclass is out of scope, the calling sequence of the subclass and
base class(es) destructor functions is in the order shown below:

« Subclass destructor
« Data member destructors, in reverse order as to that declared in the subclass
« Base class destructors, in the reverse order to that listed in the subclass declaration

In the above example, if the variable foo is going out of scope, the invocation order of

33

Chap. 2. Virtual Functions

destructor functions for it is: sub::~sub, b::~b, a::~a, base2::~base2, and, finally,
basel::~basel.

When a subclass’s constructor is called, the data to be passed on to its base classes’
constructors and its data members’ constructors are specified in a subclass constructor’s ini-
talization list. The list is specified after the subclass constructor. function argument list but
hefore the function body definition:

<subclass>::<subclass> (<arg_list>) : <initialization list>

{
/* body */

and <initlialization list> is:
<class_name> (<arg>) [, <class_name> (<arg>)]+
For example, the class sub constructor function may be written as:

sub::sub(int x, inty, int z) : base1(a), base2(b), a(z), b(z=1)

{
/* body */

An initialization list can be specified only in a subclass constructor function definition,
not at its declaration. Furthermore, one can skip specifying a base class or a data member
name in an initialization list if that class does not have a constructor defined or it has a con-
structor defined that does not take any argument.

2.6 Virtual Functions

A class member function may be declared with a “virtual” key word. This means that
any sub-classes of this class may redefine this virtual function. This is C++'s way of support-
ing polymorphism in object-oriented programming. A subclass may or may not redefine vir-
tual functions that it inherits from its base classes. If it does redefine any virtual function, it
cannot change the signature of these functions.

Virtual functions are used to define common operations for a set of related classes. The
interface of these operations is the same for all of those classes, but the actual behavior (or
implementation) of these operations may be changed per class. For example, a base class

34

Chap. 2. Virtual Functions

menu may define a draw operation that draws a form on a console, and its subclass window
may redefine the draw operation to draw a window and then a menu on a console.

Constructor functions may not be declared as virtual functions. Destructor and over-
loaded operator functions can and should be declared as virtual.

The following example illustrates uses of virtual functions:

// source module: virtual.C
#include <iostream.h>
class date
{
int year, month, day;
public:
date(int y, int m, intd) { year=y; month=m; day=d; };
virtual ~date() {};
virtual void print() {cerr << year << /" << month <</’
<< day << "\n";}};
virtual void set (int a, int b, int ¢) { year=a; month=b; day=c; };

X

class derived : public date

{
int x;

public:

derived (int a,int b,int c,int d): date(a,b,c), x(d) {};
~derived() {};
void print() { date::print(); cout << "derived: x=" << X << “\n"; };
virtual void set(int a, int b, int c) {x=a;};

|3

int main()

{
date foo(1991,5,4);
derived y(1,2,3,4);
date* p = &y,
p->print(); /I derived::print()
p = & foo;
p->print(); // date::print()

}

35

Chap. 2. Virtual Base Classes

In the above example, the date::~date, date::print, and date::set are all declared as vir-
tual functions. The class derived redefines the print and set virtual functions. In the main
function, when the variable p is peinting to y, the p->print() statement actually invokes the
derived::print function, and when p is pointing to foo, the p->print() statement invokes the
date::print function. Had the date::print function not been declared as virtual, then both the
p->prink() statements in the main function would have invoked only the date: :print function,
and the derived::print function would have been treated as an overloaded function of the
date::print function.

The compilation and sample output of the program is:

% CCvirtual.C
% a.out
1/2/3

derived: x=4
1991/5/4

2.7 Virtual Base Classes

Assume that a class A and a class B are both derived from a class Base. If then a class C
is derived from both class A and class B, each object of class C has two copies of data mem-
bers of class Base, and this may not be desirable for an application. To ensure, in such a mul-
tiple inheritance situation, that only one copy of class Base data members are kept for every
object of class C, class Base must be declared as “virtual” in both class A and class B declara-
tions, as illustrated below:

ciass Base
{
int x;
X
class A : virtual public Base
{
inty;
h

class B: virtual public Base

{

int z;

36

Chap. 2. Virtual Base Classes

¥
class C : public A, private B
{
int w;
7
A layout of the storage of an object (for example foo) of class C is similar to the follow-
ing:
A
inty;
— Base
B .
foo) nt x;
int z;
A/ virtual base class
C
int w;

A virtual base class must define a constructor function that either takes no argument or
has default values for all its arguments. A virtual base class is initialized by its most derived
class (e.g., class Base is initialized via class C, not by class A or by class B). If the most
derived class does not explicitly initialize the virtual base class, then the virtual base class’s
constructor, which does not require function arguments, is invoked to initialize objects of the
most derived class. Furthermore, virtual base class constructors are invoked before nonvirtual
base class constructors, and virtual base class destructors are invoked after-nonvirtual base
class destructors.

If there is a public virtual base class and a private virtual base class in a subclass, then
the virtual base class is treated as public in the most derived class. For example, the class
Base is treated as a public base class in class C in the above example.

The following shows the calling sequences of virtual and nonvirtual base class con-
structor and destructor functions, and the invocation of a virtual base class function
(base: :print) in a most derived class object:

87

Chap. 2.) Virtual Base Classes

/! source module: virtual_base.C
#include <stream.h>

class base
{
public:
int x;
base(int xa=0) : x(xa) { cerr << "base(" << xa << *) called\n*; };
virtual void print() [cerr << "x=" << x << "\n"; };

virtual ~base() {cerr << "~base() called\n*;}
%
class d1 : virtual public base
{

public:

inty;

d1(int xa, int ya) : base(xa)

{

cerr<<"d1("<<xa<<","<<ya<<") called\n"; y=ya,

|3

~d1() { cerr << "~d1() called\n"; };

void print() { cerr << "y=" <<y << "\n"; };
I
class d2 : virtual public base
{

public:

int z;

d2(int xa, int za) : base(xa)

{

cerr<<"d2("<<xa<<","<<za<<") called\n®; z=2za;

I8

~d2() { cerr <<"~d2() called\n*; };
|3

class derived : public d1, public d2

{
public:

38

Chap. 2. Abstract Classes

int all;
derived(int a, int b, int ¢, int d) : base(a), d1(a,b), d2(a,c), all(d)
{ cerr << derived(" << all << ") called\n";};

void prints() { base:print();cerr << "all=" << all << "\n";};
2
int main()
{
derived foo(1,2,3,4);
foo.prints();
}

The compilation and sample output of the program is:

% CC virtual_base.C
% a.out
base(1) called
d1(1,2) called
d2(1,3) called
derived(4) called
x=1

all=4

~d2() callea
~d1() called
~base() called

2.8 Abstract Classes

An abstract class is designed to be a framework for derivation of subclasses. It has an
incomplete specification of its operations; thus, no objects should be defined for any abstract
class. The C++ compiler enforces such an restriction.

An abstract class declares one or more pure virtual functions; these functions have no
definitions, and all sub-classes of the abstract class must redefine these functions. A pure vir-
tual function is declared as shown below:

class abstract_base

{
public:

39

Chap. 2. Abstract Classes

virtual void draw() = 0; / a pure virtual function

|5

An abstract class must contain at least one pure virtual function declaration. Users may
define abstract class-typed pointer or reference variables, but these variables must reference
subclass objects only.

The following example illustrates the uses of an abstract class. The program is an inter-
active program that displays a menu for the user to select operations. Each operation is encap-
sulated by one menu_obj-typed object. The menu_obj class is derived from the abstract_base
class. The latter is an abstract base class and contains two pure virtual functions: info and opr.
These pure virtual functions are re-defined in the menu_obj class, and the info function is
called to display the use of a menu_obj class object, while the opr function is called to actu-
ally execute the function of a menu_obj-typed object.

In the example, there are three menu_obj class objects defined: one is to display a local
date/time, the second one is to display Greenwich Mean Time date/time, and the last one is to
terminate the program. These objects are stored in a dispatch table called menu. The main
function iteratively calls the menu_obj: :info functions of all objects stored in menu to display
a menu to console. It then gets an input selection from a user and invokes the menu_obj::opr
function of a corresponding object. Note that the program is extensible, in that users may
define more menu_obj class objects and store them in menu, and the program will automati-
cally include those objects in action:

// source module: abstract.C
. #include <iostream.h>

#include <time.h>

#include <string.h>

typedef void (*PF)();

class abstract_base / abstract base class
{
protected:
PF fn_ptr;
char “info_msg; // for displaying information
public:

abstract_base(PF fn=0, char* msg=0) {fn_ptr=fn, info_msg=msg; };
virtual void info(int) =0;
virtual void opr() =0;

40

Chap. 2.

Abstract Classes

class menu_obj : public abstract_base // derived class

{
public:
menu_obj(PF fn, char *msg) : abstract_base(fn,msg) {};
void info(int menu_idx)
{
cout << menu_idx << *: * << info_msg << "\n",
|3
void opr() { this->fn_ptr(); };
¥
inline void fn0()
{
long tim = time(0);
cerr<<"Local: "<<asctime(localtime(&tim))<<"\n";
}
inline void fn1()
{
long tim = time(0);
cerr<<"GMT: “<<asctime(gmtime(&tim))<<"\n*;
}
infine void fn2() { exit(0); }
// dispatch table
menu_obj menu[] =
{
menu_obj(fn0, “Local data:time"),
menu_obj(fn1,"GMT date:time"),
menu_obj(fn2,"Exit program”)
IR

#define MENU_SIZ sizeof(menu)/sizeof(menu(0])

inline void display_menu()

{
for (int i=0; i<MENU_SIZ; i++) menuli].info(i):

}

41

Chap. 2. The new and delete Operators

int main()
{
for (int idx; 1;)
{
display_menu();
cout << "Select (0-” << (MENU_SIZ-1) << *)> *;
cin>>idx;
if (idx >=0 && idx<MENU_SI2)
menulidx].opr();
else cerr << "lllegal input: " << idx << “\n";
}

The compilation and sample output of the program is:

% CC abstract_base.C

% a.out

0: Local date:time

1: GMT date:time

2: Exit Program

Select (0-2): 0

Local: Fri Apr 12 19:38:21 1991

0: Local date:time

1: GMT date:time

2: Exit Program

Select (0-2): 1

GMT: Sat Apr 13 02:38:22 1991

0: Local date:time
1: GMT date:time
2: Quit

Select (0-2): 2

2.9 The new and delete Operators

C++ defines the new and delere operators for dynamic memory management. These
operators are supposed to be more efficient than the C malloc, calloc, and free functions for
dynamic memory management.

42

Chap. 2. The new and delete Operators

The argument to a new operator is a data type (or class) name and, optionally, a paren-
theses-enclosed initialization data list for the new object’s constructor function. If no initial-
ization data is specified, either the new object’s constructor function, which does not take
argument, is invoked -- if it is defined, or the new object is not initialized.

For example, given the following class declaration:

class date {
int year, moenth, day;
public:
date(int a, int b, int ¢) { year=a, month=b, day=c; I
date() { year = month =day = 0; };
~date() {};
2

The following two statements use two ditterent class date constructors:

date *date1p = new date (1995,7,1), // use date::date(int,int,int);
date *date2p = new date; // use date::date();

An array of objects may be allocated via the new operator. This is done by specifying a
class name followed by the number of objects in the array and enclosing that number in
brackets. For example, the following statement allocates an array of ten class date-type
objects:

date *dateList = new date [10];

To initialize objects in an array that are allocated via new, the object’s class should have
a constructor that requires no arguments, and this constructor is used to initialize every object
in the array. If no such constructor is defined, the objects in the array are not initialized.

There is a global variable, _new_handler, defined in the standard C++ library. If this
_new_handler variable is set to a user-defined function, then whenever the new operator fails,
it calls this routine to do user-defined error recovery actions. It then returns a NULL pointer
value to its caller. If the _new_handler is set as its default value NULL, then when the new
operator fails, it simply returns a NULL pointer to its caller.

The _new_handler declaration is defined in the <new.h> header as:

extern void (*_new_handler)();

43

Chap. 2. The new and delete Operators

It can be set either by direct assignment in users’ programs or by the set_new_handler
macro, as defined in the <new.h>:

#inciude <new.h>
extern void error_handler(); /I user-defined function
main()
{
_new_handler = error_handler; // direct assignment
set_new_handler (error_handler); // assigned via a macro

Finally, the new operator may be instructed to use a preallocated memory region to
place “dynamic” objects on it. In this case, a user takes over the memory atlocation task, and
the new operator is used to initialize the new objects that are placed on the user-specified
memory region. The following example shows how this is done:

#include <new.h>
#inciude "dcte.h"

const NUM_OBJ = 1000;
date *pool = new char[sizeof(DATE) * NUM_OBJ];
int main()
{
date *p = new (pooi) date [NUM_OBJ];
delete [NUM_OBJ] p;

In the above example, a user allocates a memory region pointed to by the pool variable.
The user then “allocates” NUM_OBJ objects of class date. This array is placed in the mem-
ory region referenced by pool, and the variable p points to the array. Finally, the array is de-
allocated via the delete operator.

A dynamic object allocated via the new operator should be deallocated via the delete
operator. For example, to delete a date class object whose address is pointed to by a variable
called p:

date *p = new date;

delete p;

Chap. 2. The new and delete Operators

If the object to be deleted is an array. the delete operator should be followed by a spec-
ification of the number of entries in the array, and then the array name. For example:

date “arrayP = new date[10];
delete {10] arrayP;

The above syntax is needed, as it causes the destructor function of objects in the array
to be invoked for each of the objects. If the above array is deallocated as:

delete arrayP:
Then the destructor function is called for the first object in the array only.

The new and delete operators may be overloaded in a class; then, whenever an object of
such a class is allocated via the new and deallocated via the delete operators, the class
instance of these operators is used instead.

The overloaded new and delete operators must be declared as class member functions.
They are treated as static member functions, in that they cannot modify any data member of
objects in their classes.

The following example illustrates the declaration of overloaded new and delete opera-
tors in the class date:

class date

{
int year, month, day;
public:

date(inta, intb, intc) {year=a, month=b, day=c; };
~date() {}

// overloaded new operator
void* operator new (size_t siz)

{

return ::new char [siz];

b

45

Chap. 2. Operator Overloading

// overioaded delete operator
void operator delete (void* ptr)
{
::delete ptr;
2
2

An overloaded new member function must take a size_t-type argument, which specifies
the size, in bytes, of an object to be allocated. The function then returns the address of newly
allocated object.

An overloaded delete member function must take a void* argument, which points to an
object to be deallocated. The function does not return any value.

Users are free to implement the body of the new and delete member functions in any
way they like.

2.10 Operator Overloading

C++ allows users to define standard built-in operators to work on classes. This enables
class objects to be used as if they were of the built-in data type. The built-in ‘+°, ‘-, “*’, and
“[]” operators have no meaning to class objects, unless users ‘explicitly overload these opera-
tors in their classes.

W[T [%~ &l
~'7=<><=>:‘:

+= -=| /= Y%= N=| &= |= <<=
>>= [] () | > | ->%| new |delete

The C++ operators that may be overloaded in classes are shown in the above table. Spe-
cifically, the meanings, precedence, and arity of operators cannot be overridden by overload-

46

Chap. 2. Operator Overloading

9

ing. This means that the “+”, “-”,"*” and “&" operators may be defined as unary or binary
operators. Furthermore, overloading treats all prefix and suffix instances of “++” and *--"
operators as prefix operators.

All overloaded operator functions must take at least one class object as argument. They
may be declared as friend or member functions. However, operators such as “<<" and *“>>,"
which do not require a left operand to be a class object, should be defined as friend functions,

% ¢ 1)

and operators such as “[]”, ‘=", “->”, *()” and “+=," which require a left operand to be a class
object, should be declared as member functions.

The following example illustrates the use of operator overloading:

// source module: overload.c
#include <iostream.h>
#include <string.h>
class sarray
{
int num;
char *data;
public:
sarray(const char” str) // constructor
{
num = strien(str)+1;
data = new char[num};
strcpy(data, str);

L
~sarray() { delete data; };

char& operator(] (int idx) // destructor
{
if (idx>=0 && idx < num)
return data[idx];
else

{

cerr << “Invalid index: “ << idx << endl,
return data(0];

47

Chap. 2.

48

const char* operator=(const char” str)

{
if (strlen(str))

{
delete data;
num = strlen(str)+1;
data = new char[num];
strcpy (data, str);

}

return str;

h

const sarray& operator=(const sarray& obj)
{
if (strlen(obj.data))

{
delete data;
num = strlen(obj.data)+1;
data = new char[num];
strcpy (data, obj.data);
}
return obj;
k
int operator == (const char” str)
{
return (str && data) ? strcmp(data,str) : -1;
h
int operator < (const char* str)
{
return (strcmp(data,str) <0) ? 1:0;
b
int operator > (const char” str)
{
return (strcmp(data,str) >0) ? 1:0;
¥

Operator Overloading

Chap. 2. Template Functions and Template Ciasses

friend ostream& operator << (ostream& os, sarray& obi)

{
raturn os << {obj.data ? obj.data : “Nil) ;
X
L
int main()
{
sarray A(“Hello”), B("world™);
cout << “A:“ << A << endl; /I << operator
A ="Bad"; /I = operator
A[0] =T"; // [] operator
cout << “A:“ << A << endl;
A=8B; // = array& operator

cout << “A: " << A[1] << endi;
cout << “A < B: " << (A < “Two") << end;
return O;

}

The above example defines a class sarray, which manages a character array per its
object. The advantage of using the class is that each of its objects adjusts its buffer dynami-
cally to fit any character string stored in it. Furthermore, the objects can be operated on using
the “<<*, “[]”, “=." and “<* operators, due to the declaration of the overloaded operator func- |
tions. All of these make the sarray objects more intuitive to understand and use. and they hide
the low-level array manipulation coding from users.

The compilation and sample output of the program is:

% CC overioad.c
% a.out

“A: Hello

A: Tad

Ao

A<B:0O

2.11 Template Functions and Tempiate Classes

Template functions and template classes enable users to create generic functions and
classes that work with different data types and classes. After these functions and classes are
coded and tested, users can create different instances of these functions and classes for spe-

49

Chap. 2. Template Functions and Template Ciasses

cific data types and/or classes. Thus, template functions and classes significantly save appli-
cation development time. Another advantage of these is the reduction, per program, of unique
functions and class names that require definition. This speeds up the compilation process and
reduces potential name conflicts in users’ programs.

A template function or a template class is instantiated when it is first used or when its
address is being taken. These instances have no names, and they last only as long as they are
in use.

2.11.1 Template Functions

The formal syntax of a template function declaration is:

template <formal param. list> <return_value> <function_name>
(<arg_list>)

<body>

For example, to declare a template function that swaps the content of two objects:

template <class T> void swap (T& left, T& right)

{
T temp = left;
left = right;
right = tenp;
}

Once the above template function is declared, users can create objects of specialized
instances of that class for various data types. The following example shows how this is done:

main()
{
inta=1,b=2;
swap (a, b) ; /I creates a swap(int,int) instance

double aa = 101.0, bb = 25.0;

50

Chap. 2. Template Functions and Tempiate Classes

swap(aa, bb); // creates a swap(double,double) instance

}

A formal parameter list is enclosed by the “<* and “>” characters. The list consists of a
comma separated list of formal type parameters. The list cannot be empty. Each formal type
parameter begins with a class key word and is followed bv a type identifier. For example, the
following declaration is correct: '

template <ciass T, class U> void foo(T*, U);

whereas the following declaration is wrong, as the type U does not have the class key
word preceding it:

template <class T, U> void foo1(T&); /I Error. Must be "class U"

A type parameter may appear only once in a formal type parameter list. Thus, the fol-
lowing declaration is incorrect, as it specifies class T twice:

template <class T, class T> void foo1(T&); {// Error

Each type parameter must appear at least once in a template function argument list.
Thus, the following declaration is incorrect, as the type U is not used in the function argu-
ment list:

template <class T, class U> U foo1(T&); // Error

A correct version of the declaration is to use type U in the function argument list, such
as the following:

template <class T, class U> U foo1(T&,U*); // OK.

A template function can be declared extern, static, or inline. The specifier is placed
after the formal parameter list and before the return value type specification. The following
examples declare an inline function and an external function:

template <class T> inline void foo(T* tobj, int size) {..}
template <class T> extern int fooA(T& tobj) ;

A template function can be overloaded, provided that the signature of each declaration
is distinguished, either by argument type or by number. For example, the following declara-
tions are all legal:

51

Chap. 2. Template Functions and Template Classes

template <class T> T min(T t1, T t2);
template <class T> T min(T* t1, T 2, T t3);
template <class T> T min(T tt, int t2);

However, the two declarations below are incorrect, as type parameter identifiers cannot
be used to differentiate overloaded template functions:

temnplate <class T> T min(T t1, T t2);
template <class U> U min(U t1, U t2); /I Error!

Finally, specialized template functions can be defined. Specialized functions are used in
higher precedence than are generic template functions in resolving function references. For
example, in the following program, the first invocation of min in the main function uses the
specialized version of min that takes char*-typed arguments, and the second invocation of
min creates an instance of the template function min for the double data type:

template <class T> T.min(T t1, T t2)
{
return (11 <t2) 7 t1 :t2;
} .
// specialized version of min()
char * min(char” t1, char* t2)

{
return (strcmp(t1,t2) < 0) ? t1 :12;

}

int main()

{
char® ptr = min ("C++","UNIX"); // min(char*,char*)
double x = min(2.0, 3.0); /l min(T,T)

}

2.11.2 Template Classes
The formal syntax of a template class declaration is:
template <formal parameter list> class <class_name>

{

<declaration>

52

Chap. 2. Template Functions and Template Classes

In a template class declaration, the template key word is followed by a formal parame-
ter list, then a class name and its body. A formal parameter list is enclosed by the “<* and **>"
characters. The list consists of a comma-separated list of formal parameters. A formal param-
eter may be a type parameter or a constant expression parameter. The following is an example
of a template class declaration: '

template <class T, int len> class foo

{
T list{len};

As in a template function declaration, each parameter declared in a formal parameter
list should be used at least once in the associated template class declaration. Moreover, when-
ever a template class name is referenced, it must always be specified along with its parameter
list enclosed by angle brackets, except inside the class declaration. The following example
depicts a declaration of a template class Array, which contains an array of type T with len
entries. The T and len are parameters to be supplied when the template class instances are
created. Note also that the constructor function definition has the class name and parameter
list specified:

template <class T, int len> class Array
{
public:
Array();
~Array() {};
protected:
T listlen};

template <class TT, int len> inline
Array<TT,len> :: Array()

{

53

Chap. 2. Template Functions and Template Classes

To create an object for a specialized instance of a template class, users specify the class
name, followed by the actual data for the parameter list enclosed in “<* and > Thus to cre-
ate an object of the Array class that contains an integer array with 100 entries, the object def-
inition is:

Array<int, 100> foo; // foo is an object

Template classes can be derived from template or nontemplate base classes. The type/
subtype relationship between derived and public base template classes holds, provided they
are of the same actual parameter types.

The following example declares a template subclass Array_super which is derived

from the template classes b and b2. The foo variable is defined as the int-instance of the

. Array_super class, and ptr is a pointer to the int-instance of the class b/. Since bl <int> and

Array_super<int> have the same parameter type, they are compatible and, thus, ptr can be

assigned the address of foo. However, bl <double> and Array_super<int> are incompatible;
thus, it is an error to assign the address of foo to ptr2.

template <class Type>
class Array_super : public b1<Type>, public b2<Type> {...};
Array_super<int> foo;
bi<int> *ptr = &foo; // Correct
b1<double> *ptr2 = &foo; /! Error

Friend functions and classes can be declared inside template classes. Each of these
friend functions and classes may be one of the following:

* Nontemplate function or class
* Template function or class
* Specialized instance of a template function or class

If a friend function or class is a general template, this means that all instances of that
function or class are friends to the template class. On the other hand, if a friend function or
class is a specialized instance of a template, only that instance is a friend to the template class
being declared. The following example illustrates these concepts:

template <class U> class Container

{

// general template friend class
template <class T> friend class general_class;

Chap. 2. Template Functions and Template Classes

// general template friend function
template <class UT> friend general_func (<UT&, int);

// Only the same type U instance of class Array is friend
friend class Array<U>;

// Only the same type U instance of the function is friend
friend ostreamé& operator<< (ostream&, Container<U>&);

// non-template friend class
friend class dates;

// non-template friend function o . .
friend void foo (); Srinivas Institute of Technology

Y Acc. M /3"-"0;2.“ SN

Call Mo v e onsasecsmssadd

In the above example, the template class Container has a formal parameter of type U.

The Container class has a few friend functions and classes; of these, class dates and foo are

friends for all specialized instances of the Container class. The template Array class and the

overloaded operator “<<* are friends for specialized instances of the Container class as long

as they use the same parameter type. Thus, Array<int> is a friend class for the Con-

tainer<int>, but Array<double> is not a friend for the Container<inr>. Finally, all special-

ized instances of the template general_class class and general_func function are friends for
all specialized instances of the Container class.

Specialized member functions or template classes may be defined for a template class.
However, all these specialized instances can be defined only after the template class is
declared. Furthermore, a specialized template class must define all member functions of a
template class on which it is based. The following shows an example of a declaration of a
template class Array, then a specialized constructor of Array for the double data type, and,
lastly, a definition of a specialized class Array for the char* type:

template <class T> class Array
{
public:
Array(int sz) { ar=new T(size=sz]; };
~Array() { delete [siz] ar; };
T& operator{}(int i) { return arfil; };
protected:
T ar;

55

Chap. 2. Tempiate Functons and Tempiate Classes

int size;

b

// Specialized constructor tor double type
Array<double>::Array(int size) { ...}

// Specialized Array class definition
class Array<char*>
{
public:
Array(int sz) { ar=new char[size=sz]; };
~Array{) { delete [} ar; };
char& operatorf|(int i) { return arfi]; };
protected:
char” ar;
int size;

A templae class can declare static data members. Each specialized instance of the tem-
plate class has its own set of static data members. The following example declares a template
Array class with two static data members: Arrav<7>::pool and Array<T>::puol_sz. These
static variables are defaulted to be initialized to O and 100, respectively, for all specialized
instances of class Array:

template <class T> class Array

{
{public:
Array(int sz { ar=new char[size=sz]; };
~Array() { delete [sz] ar; };
void “operator new(size_t);
void operator delete(void*,size_t);
ptotected:
char* ar;
int size;
static Array * pool;
static const int pool_sz;
X

tempiate <class T> Array<T>* Arrav<T>::pool = O;
template<ciass T> const int Array<T>::pool_size = 109;

Chap. 2. Exception Handling

One can define a specialized instance of static class data members and specify unique
initial values for them. Thus one can define the Array<char>:pool and
Array<char>::pool_sz variables for the char instance of the class Array as:

Array<char>* Array<char>::pool = new char{1000];
Array<char>* Array<char>::pool_sz = 1000;

In addition to all the above, static class data members of a template class can be
accessed only through a specialized instance of the class. Thus the first statement below,
which directly references the Array<T>:pool, is illegal, whereas the references of
Array<char>::pool and Array<int>::pool_sz are correct.

cout << Array<T>::pcol << endl /l Error
Array<char>* ptr = Array<char>::pool; /! Correct
int x = Array<int>::pool_sz; // Correct

Finally, a nontemplate function can manipulate objects of specialized instances of tem-
plate classes, whereas a template function can use objects of either a specific instance or of a
general parameterized template class. In the following, foo is a nontemplate function; thus, it
may work with objects of a specialized instance (in this case, Array<int>) of the class Array.
On the other hand, foo?2 is a template function and it can manipulate objects of any instance
of the class Array, as long they have the same parameter type (i.e., foo2<int> function can
take a Array<int> type object as argument):

void foo(Array<int>& Aobj, int size)

{
Array<int> “ptr = &Aobj;

}

template <class T> extern void fo02 (Array<T>&, Array<int>&);

2.12 Exception Handling

ANSV/ISO C++ provides a standard exception handling method for all applications to
respond to run-time program anomalies. This simplifies application development efforts and
ensures consistency in behavior of applications.

57

Chap. 2. Exception Handling

An exception is an error condition detected in a program at run time. An exception is
“raised” via a throw statement, and an exception handler function is “caught” by a user-
defined catch-block, which is in the same program. If a catch-block does not terminate the
program, the program control flow continues at the code right after the catch-block and is not
after the throw statement. Furthermore, only by code executed directly or indirectly within a
try block can exception be thrown. Thus, exception handling requires special structuring of
users’ C++ program to anticipate code region where exception may occur and to specify one
or more catch-blocks to handle exception.

C++ exception handling mechanisms are synchronous, in that exceptions are triggered
in users’ applications via the explicit throw statements. This differs from asynchronous
exceptions caused by events like keyboard interruptions from users. The latter exceptions are
unpredictable as to when and where they will occur, and they can be handled via the signal
function (see the chapter on Signals).

The following example illustrates a simple exception handling in C++:
// source module: simple_exception.C

#include <iostream.h>
main(int argc, char* argv[])

{
try {
if (argc==1) throw “Insufficient no. of argument”;
while (--argc > 0)
cout << argc << “: “ << argvfargc] << end|;
cout << “Finish “ << argv[0] << endl;
return O;
}
catch (const char* msg) {
cerr << “exception: “ << msg << endj;
}
catch (int unused) {
cerr << “This catch block is un-used\n”;
return 99;
}
cout << “main: continue here after exception\n”;
return 1;
}

In the above example, the normal function code for main is enclosed in the try block. In
this block, a test is made on the argc value. If its value is 1, an exception occurs and the throw

58

Chap. 2. Exception Handling

statement is executed to raise an exception. However, if argc value is greater than 1, the while
loop is executed to dump out all command line arguments, in reverse order, and the program
terminates via the return O statement.-

The syntax of a throw statement is.
throw <expression> ;

where <expression> is any C++ expression that evaluates to a C++ basic data type
value or a class object. The <expression> value is used to seject a catch-block that the “argu-
ment” type matches or that is compatible with the <expression> data type. If a throw state-
ment is executed, the rest of the statements in the same try block are skipped, and the
program flow continues in a selected catch-block.

One or more catch-blocks may be specified in a function. The catch-blocks must be
specified right after a try block. Each catch block begins with the catch key word, followed by
a object tag specification enclosed in “(“ and “)”. After that, one or more statements for the
block are enclosed in “{* and *}”. Note that although a catch-block looks like a function def-
inition, it is not a function. It is really just a set of C++ statements collected together and
given an object tag. The object tag is used by a throw statement to select which catch-block to
execute, and the object contains the <expression> value of the throw statement. This valie
usually conveys more information about an exception that was raised.

After a catch-block is executed, if it does not terminate the program, the program flow
continues at the statement after the catch-blocks.

In the above example, a sample compilation and sample run of the program, with no
exceptions, are:

% CC simple_sxception.C
% a.out hello

1: hello

Finish a.out

If the program is rerun without any argument, an exception occurs and the program’s
output is:

% a.out

exception: Insufficient no. of argument
main: continue here after exception

59

Chap. 2. Exception Handling

Note that in the above run, the throw statement includes a char* expression, thus the
catch (const char* msg) block is selected, but not the carch(int unused) block. However, if
users add a statement like throw 5 in the try block, this new statement, if executed, selects the
catch(int unused) block only.

A throw statement can also specify a class object name as argument. This allows it to
pass more information to a catch-block for better error diagnostics and reporting. The follow-
ing program is a revised version of the previous example:

// source module: simple2.C
#include <iostream.h>

// special class for error reporting
class errObj
{
public:
int line;
char* msg;
// constructor function
errObj(int lineNo, char* str)
{
line = lineNo;
msg = str;
%
/I destructor function
~errObj() {};
h

main{ int argc, char* argv[])

{

try {

it (argc==1) throw errObj(__ LINE__,
"Insufficient no. of arguments”);
while (--argc > 0)
cout << arge << “: “ << argvfargc] << end|;

cout << “Finish “ << argv[0] << end;
return O;

}

catch (errObj& obj) {
cerr << “exception at line: “ << obj.line <<*, msg: “

60

Chap. 2. Excaption Handling

<< obj.msg << endl;
}
cout << “main: continue here after exception\n”,
return 1;

The compilation and sample run of the program, with an exception, are:

% CC simpie2.C

% a.out

exception at line: 23, msg: Insufficient no. of arguments
main: continue here after exception

If an exception is raised but no catch-blocks in the same function match the throw state-
ment’s argument, then the function is “returned” to its calling function(s), and the catch-
blocks in each of these functions are searched for a match to the throw’s argument. The pro-
cess stops when either a catch-block is matched and the program flow continues in that block
and in the code after that, or no match is found and the built-in function terminate is called.
The terminate function in turns calls the abort function, which aborts the program.

When a function returns to its caller(s) due to a throw statement, any objects local to an
exiting function are deallocated via their destructors, and the run-time stack is rewound to
deallocate the stack frame reserved for the exiting function.

The following example illustrates these concepts:
// source module: simple3.C

#include <iostream.h>
void f2 (int x)

{
try |
switch (x) {
case 1. throw “exception from f2.";
case 2: throw 2;
}
cout << “f2: got “ << x <<“ arguments.\n’;
return,
)

catch (intno_arg) {

61

Chap. 2. Exception Handling

cerr << *f2 error: need at least “ << no_arg << * arguments\n”;

}

cerr << “f2 returns after an exception\n”;

main(int argc, char* argv(})
{
try {
f2(argc);
cout << “main: f2 returns normally\n”;
return O;
}
catch (const char* str) {
cerr << “main: “ << str << endl;
}
cerr << “main: f2 returns via an exeception\n”;
return 1;

In the above example, if the program is invoked with no argument, the f2 function exe-
cutes the throw “exception from f2” statement and this causes the catch (const char* str)
block in main to be executed. The program output is:

% CC simple3.C

% a.out

main: exception from f2.

main; f2 returns via an execution

If, however, the program is invoked with one argument (and argc value is 2), the f2
function executes the throw 2 statement and this causes the catch(int no_arg) block in f2 to be
executed. The program output for this is:

% a.out hello

f2 error: need at least 2 arguments
f2 returns after an exception

main: f2 returns normally

Finally, if the program is invoked with two or more arguments, then no exception is
raised by f2, and the program output is:

62

Chap. 2. Exception Handling

% a.out hello world
f2: got 3 arguments.
main: f2 returns normally

2.12.1 Exceptions and Catch-Blocks Matching

When a throw statement with an argument of data type T is executed, the following
rules are used to match a catch-block to catch the exception.. Assuming the data type of a
catch block is of type C, then the catch-block is selected if any one of the following condi-
tions is true:

e Tissameas C

« Tis a const or volatile of C, or vice versa

+ (is areference of T, or vice versa

« (Cis a public or protected base class of T

« Both C and T are pointers, and T can be converted to C by a standard pointer conver-
sion

2.12.2 Function Declarations with Throw
A function declaration may optionally specify a set of exceptions that it directly or indi-

rectly will throw by providing a throw list. For example, the following statement declares an
external function funct, which may throw exceptions with data tag of const char* or int.

extern void funct (char * ar) throw(const char®, int);

A throw list may be empty, which means that a function will not throw any exceptions.
The following statement declares funct2 not raise any exception, either directly or indirectly:

extern void funct2(char * ar) throw();

However, if the above funct2 does invoke a throw statement, the built-in unexpected
function is called. The unexpected function, by default, calls the abort function to terminate
the program.

A throw list is not part of a function type. Thus, it cannot be used to overload functions.
For example, the following two function declarations are treated the same by the C++ com-

piler:

63

Chap. 2. Exception Handling

extern void funct3 (char * ar) throw(char*);
extern void funct3 (char * ar=0);

2.12.3 The Terminate and Unexpected Functions

The terminate function is called when a throw statement is executed but no matching
catch-block is found. By default, the terminate function invokes the abort function to abort
the program. However, users may install their functions in place of abort in terminate via the
set_terminate function, as follows:

extern void user_terminate(void);
void (*old_handler)(void);
old_handier = set_terminate (user_terminate);

In the above sample statement, the user_terminate is a user-defined function to be
called when terminate is invoked. The user_terminate function is installed via the
set_terminate function, and the old_handler variable holds the old function installed in the
terminate function.

The unexpected function is called when a throw statement is executed in a function that
is declared with an empty throw list. By default, the unexpected function invokes the termi-
nate function to abort the program. However, users may install their functions in place of rer-
minate in unexpected via the ser_unexpected function as follows:

extern void user_unexpected (void);
void (*old_handler)(void);
old_handler = set_unexpected (user_unexpected);

In the above sample statement, the user_unexpected is a user-defined function to be
called when unexpected is invoked. The user_unexpected function is installed via the
set_unexpected function, and the old_handler variable holds the old function installed in the
unexpected function.

Since the terminate and unexpected functions are assumed to never return to their
caller, any user-installed functions to be invoked by either terminate or unexpected should
terminate the program at their completion.

64

Chap. 2. Summary

Actually, the terminate and unexpected functions should rarely be cailed in a well-
designed program, as they really signal that users programs have not accounted for all possi-
ble exceptions raised in their programs, and this is not a good programming practice. The
only exception to this is the use of third-party C++ libraries, which raises undocumented
exceptions. In this case, users should report the problems to their vendors and install the han-
dler for terminate and/or unexpected only as a short-term work-around.

2.13 Summary

This chapter covers the object-oriented program design and the draft ANSIISO C++
language features. As discussed in the chapter, C++ is derived from C and has added con-
structs to support an object-oriented programming style. These new constructs include
classes declaration, classes inheritance, polymerphism via virtual functions, and template
functions and classes. Finally, the C++ exception handling method is also discussed. Exten-
sive examples are depicted to illustrate the uses of these concepts.

These C++ features are discussed here to refresh users’ memories of the C++ program:
ming techniques so that they can understand the rest of the book. Furthermore, some readers
may not be familiar with the new features of ANSI/ISO C++. This chapter describes those
new features in more detail.

The next chapter discusses the C++ /O stream libraries. These libraries are used exten-
sively by all C++ applications, but their full features are not always understood by readers.
The next chapter should help users refresh their memories and learn some new features.

65

Chap. 2.

2.14

[1].

[2].

[2].

66

References

References

Andrew Koenig, Working Paper for Draft Proposed International Standard for
Information Systems -- Programming Language C++ (Committees: WG21/NO414,
X3J16/94-0025), January 1994.

Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual,
Addison-Wesley, 1990.

Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1991.

(J.)

C HAPTER

C++ I/0 Stream Classes

This chapter reviews the C++ L/O stream classes. These classes are defined in the
draft ANSI/ISO C++ standard. They enable users to perform I/O operations with the standard
input and output streams, disk files, and character buffers. They essentially eliminate the
needs of users to use the C stream /O functions, string functions, and the printf class func-
tions. The advantage of using the C++ /O stream classes is that they allow the compiler do
more type-checking on the actual arguments supplied to these classes. They can also be
extended to support user-defined classes.

There are three major headers for the /O stream classes. The <iostream.h> header
declares the istream, ostream, and iostream classes for the standard input and output stream I/
O operations. It also declares the cout, cin, cerr, and clog objects that are used in most C++
programs. The <fstream.h> header declares the ifstream, ofstream, and fstream classes for
disk file /O operations. Finally, the <strstream.h> header declares the istrstream, ostrstream,
and strstream classes for in-core data formatting with character buffers.

Although C++ I/O stream classes, especially the cout, cin, and cerr objects, are widely
used in most C++ applications, not all users know the detailed features of these classes, nor
are they being described fully by many textbooks on C++ programming. The rest of this
chapter gives a comprehensive description of these I/O stream classes.

67

Chap. 3. The I/O Stream Classes

3.1 The I/O Stream Classes

The <iostream.h> header declares three classes for the standard input and output
streams 1/O: istream, ostream, and iostream. The istream class is for data input from an input
stream, the ostream class is for data output to an output stream, and the iostream class is for
data input and output within a stream. Besides these classes, the <iostream.h> header also
declares four objects:

Stream object Function

cin An istream class object tied to the standard input
cout An ostream class object tied to the standard output
cerr An ostream class object tied to the standard error,

providing unbuffered output

clog An ostream class object tied to the standard error,
providing buffered output

Note that the cin, cout, clog, and cerr objects do not use the same file descriptors as do
the C stdin, stdout, and stderr stream pointers. However, users may force cin and stdin to use
the same file descriptor; cout and stdout to use another file descriptor; and cerr, clog, and
stderr to use a third file descriptor; via the static function:

ios::sync_with_stdio();

The above function should be called in a user program before any stream 1/0 operation
is performed.

3.1.1 The istream Class

The istream class is used to extract data from an input stream. The cin object is of this
data type. The user-visible operations that are defined for the istream class are:

Operation Function

>> Extracts white space delimited data (of any stan-
dard data type) from an input stream

istream& get(char c) , int get()
Extracts a character from an input stream. White
spaces are treated as legal characters

istream& read(char” buf, int size)
Extracts size bytes of data from an input stream and
puts it into buf

Chap. 3.

Operation

The /O Stream Classes

Function

istream& getline(char* buf, int limit, char delimiter="\n")

int gcount()

istream& putback(char c)

int peek()

Extracts from an input stream at most limir-1 byte
of data, or when the delimiter character or EOF
(end-of-file) is encountered. The extracted data are
put into buf. The delimiter character, if found, is not
included in buf

Returns the number of bytes extracted by the last
call of read or getline

Puts the specified character ¢ back into an input
stream

Returns the next character in an input stream but
does not extract it

istream& ignore(int limit=1, int delimiter=EOF)

streampos tellg()

Discards up to limit characters in an input stream, or
if the delimiter character or EOF are encountered

Returns the current stream marker byte offset from
the beginning of the stream

istream& seekg(streampos offset, seek_dir d=ios::beg)

Repositions the stream marker to offset bytes from
the beginning of the file (if d=ios::beg), current
stream marker position (if d=ios::cur), or EOF (if
d=ios::end)

The following is a UNIX wc-like program that illustrates the use of istream class oper-
ations. Specifically, the program counts the number of lines, words, and characters found in

the standard input stream:

/* source module: we.C */
#inciude <iostream.h>

#include <ctype.h>

int main()

{

int ch, lineno=0, charno = 0, wordno = 0;
for (int last=0; cin && (ch = cin.get()) != EOF; last=ch)

switch (ch)
case '\n":

lineno++, wordno++;
break;

69

Chap. 3. The /O Stream Classes

case '/: if (cin.peek()==") { // don’t count comments
cin.ignore(10000,\n’);
lineno++;
}
else charno++;
break;
default: charno++;
if (isspace(ch) && last!=ch) wordno++;
}

cout << charno <<" " << wordno <<* " << lineno << “\n" << flush;

The compilation and sample run of this program are:

% CCwc.C
% a.out < /etc/passwd
557 23 14

The “>>” operator may be overloaded as a friend function for each user-defined class.
1 his enables users to extract class object data in the same manner as they do for the standard
C++ data type objects. The overloaded “>>” function should be defined in the following
manner:

class X // user-defined class
{
public:
friend istream& operator >> (istreamé& is, X& xObj)
{

is >> <class X data members>;
return is; :

3.1.2 The ostream Class

The ostream class is used to insert data to an output stream. The cout, cerr, and clog
objects are of this data type. The user-visible operations that are defined for the ostream class

are:

70

Chap. 3. The /O Stream Classes

Operation Function
<< Inserts the value of any standard data type to an out-
put stream

ostream& put(char ch) Inserts a character ch to an output stream

ostream& write(const char*buf, int size)
Inserts size byte of data contained in buf to an out-
put stream

typedef streampos long;
streampos tellp() Returns the current stream marker byte offset from
the beginning of the stream

ostream& seekp(streampos offset, seek_dir d=ios::beg)
Repositions the stream marker to offsef bytes from
the beginning of the file (if d=ios::beg), current
stream marker position (if d=ios::cur), or EOF (f
d=ios::end)

ostream& flush() Forces flushing of data to an output stream

The following statements illustrate the use of ostream class operations:

cout << "x=" << X << "y=" <<y << "\n";
cout.put(\n’).write("Hello world",11).put(\n’);

The “<<” operator may be overloaded as a friend function for each user-defined class.
This enables users to print class objects’ data in the same manner as they do for the standard
C++ data type objects. The overloaded “<<” function should be defined in the following
manner:

class X // user-defined class
{
public: v
friend ostream& operator << (ostream& os, X& xObj)
{

os <<<class X data members>;
return os;

71

Chap. 3.

The /O Stream Classes

3.1.3 The iostream Class

The iostream class is derived from the istream and ostream classes. It contains all the
properties of its two base classes. This class is used primarily as a base class for the fstream
class, and the latter is commonly used for defining objects to read/write disk files.

3.1.4 Theios Class

The istream, ostream, and iostream classes contain a virtual base class ios. The ios
class records an error state and a format state for each /O stream class object. Specifically,
the ios class declares the following operations:

Operation
int eof()
int bad()
int fail()

int good()

int rdstate()

void clear(bits=0)

int width(int len)

char fill(char ch)

int precisio‘ri(int)

long setf(iong bitFlag)

72

Function
Returns 1 if EOF has been encountered in a stream

Returns 1 if an invalid operation (e.g., seeking pass
EOF) has been detected

Retumns 1 if an I/O operation is unsuccessful or
bad() is true

Returns 1 if all previous /O operations have been
successful

Returns the error state of a stream

Sets the error state’s bit vector to the value given in
bits. If bits is O, resets the error state to 0

Sets the field width to len for the next data to be in-
serted, or sets the buffer limit to len-1 for character
string extraction. This routine returns the previous
field width

Sets the fill (padding) character to ch. Returns the
previous fill character

Sets the number of significant digits to be displayed
for real number insertion. Returns the previous pre-
cision value

Adds the format bit(s) as specified in bitFlag to the
existing format state for insertion. Returns the old
format state value. Possible values for bitFlag may
be:

Chap. 3. The /O Stream Classes

ios::showbase Displays numeric base

ios::showpoint Displays trailing decimal point and zero
ios::showpos Displays sign character for numeric values
ios:.uppercase Uses “X” for hexadecimal number display (when

ios::showbase is set), and “E"to print floating point
numbers in scientific notation

long setf(long bitFlag long bitField)
Sets/resets (as according to bitFlag) the format bits
as specified in bitField for insertion. Returns the
old format state value. Possible values for bitField/

bitFlag may be:
ios::basefield ios::hex Sets the numeric base to hexadecimal
ios::oct Sets the numeric base to octal
ios::dec Sets the numeric base to decimal (the default)
ios::floatfield jos::fixed Displays real numbers in decimal notation
jos::scientific Displays real numbers in scientific notation
jos::adjustfield ios::left Left-justifies the next argiment by inserting
fill characters after the valde
jos::right Right justifies the next argument by inserting
fill characters before the valie
jos::internal Fill characters are added after any leading

sign or base indication, but before the value

ios::skipws 0 Extraction will not skip white spaces
ios::skipws Extraction will skip white spaces (default)

All /O operations of a stream object are aborted if its error state is not zero. Users can
check the error state of a stream object via the ios::bad or ios::fail function, or by using the
overloaded “!" operator. The following sample statements illustrate how this is done:

if (cin Il lcout) cerr << "I/O error detected”;
if (!(cout << x) Il x<0) cout.clear(ios::badbit | cout.rdstate());
if (cout.fail()) clog << "cout fails\n";

A stream object’s error state can be reset via the ios::clear function:

i.f (cin) cin.clear();

73

Chap. 3. The I/O Stream Classes

Besides dealing with error states, the ios class functions are also used to set data for-
matting options of stream objects. The data formatting features provided by the ios class are
as powerful as those provided by the C prinif class functions.

The following example program illustrates the use of these ios functions:

// source module: ios.C

#include <iostream.h>

int mainy()

{
int x = 1024,
double y= 200.0;
static char str[80] = “Hello”;
cout.setf(ios::showbase | ios::showpos | ios::uppercase):
cout.setf(ios::scientific, ios::floatfield);
cout.precision(8);
cout << ™";
cout.width(10);
cout fill("*'):
cout << x <<", y="" <<y << "\n";
cout << "
cout.width(7);
cout.setf(ios::left,ios::adjustfield);
cout.setf(ios::fixed, ios::floatfield),
cout << x << ™, y=" << y << "\n%;
cout << "™
cout.width(8);
cout.setf(ios::right,ios::adjustfield);
cout << str << "\n";

In the above example, the ios::setf (ios::scientific, ios::floatfield) and the ios::preci-
sion(8) set the display format for floating point data in scientific notation with a precision of
eight, respectively. The ios::setf (ios: . fixed, ios::floatfield) statement, on the other hand, sets
the display format for floating point value to be fixed point notation. Note that once a display
format is set for an object, the setting is unchanged until it is overridden by the next ios::setf -
call.

The rest of the example should be quite self-explanatory. The compilation and sample
output of the program is:

74

Chap. 3. The Manipulators

% CCios.C -oios;ios

waeee,1024', y="+2.00000000E +02
'+1024**, y='+200.00000000’
***Hello’

3.2 The Manipulators

A manipulator is a function that can be included in an /O stream class operation to
cause some special effects. For example, the flush manipulator is commonly used with
ostream class objects to force flushing of buffered data held in these objects:

cout << “A big day” << flush;

A simple manipulator is a function that takes an istream& or ostream& argument, oper-
ates on it in some way, and returns a reference of the object. The following example illus-
trates the definitions of two manipulators, tab and fld. The tab manipulator inserts a TAB
character to an output stream, and the fid manipulator sets the display format of an output
stream to display integer data in octal format and with the 0 prefix. Furthermore, the mini-
mum field width for displaying a value is 10:

ostream& tab(ostream& 0s)

{
return os << \t’;

}

ostream& fld(ostreamé& 0s)

{
os.setf(ios::showbase,ios::showbase);
os.setf(ios::oct, ios:basefiled);
os.width(10);
return os;

}

The following statements show how to use the manipulators:

intx = 50, y = 234;
cout << fld << x << tab <<y <<\’

The <iomanip.h> header file declares a set of system-supplied manipulators that are
commonly used with stream class objects. Some of these manipulators are:

75

Chap. 3. The File I/O classes

Manipulator Function
flush Forces flushing of data to an output stream
setw(int width) Sets the minimum field width for the next argument

to be inserted and the maximum buffer limit (width-
1) for the next character string extraction

resetiosflags(long bitFlag)
setiosflags(long bitFlag) Resets or sets the specified format bits in the
stream’s format state

setprecision(int p) Sets the precision to p for the next real number to
be inserted

The following statements show the sample uses of some of these system-supplied
manipulators:

cout << x << setw(5) << y << flush; // force flushing of cout

cin >> resetiosflags(ios::skipws) // No white spaces skipping
>>C
>> setiosflags(ios::skipws); // Skip white spaces

cout << setprecision(8) << Dval; // set precision

3.3 The File I/O classes

The <fstream.h> header declares the ifstream, ofstream, and fstream classes for file
manipulation. These classes provide functionality that is equivalent to the fopen, fread, fwrite,
and fclose, etc. C stream files functions. .

Specifically, the ifstream class is derived from the istream class, and it enables users to
access files and read data from them. The ofstream class is derived from the ostream class,
.and it enable users to access files and write data to them. Finally, the fstream class is derived
from both the ifstream and ofstream classes. It enable users to access files for both data input
and output.

The constructors of the ifstream and ofstream classes are defined in the <fstream.h>
header as:

ifstream::ifstream();
ifstream::ifstream(const char* name, int open_mode=ios::in,
int prot = filebuf::openprot /* 0644 */);
ofstream::ofstream();
ofstream::ofstream(const char* name, int open_mode=ios::out,
int prot = filebuf::openprot);

76

Chap. 3.

The File /O classes

The possible values of the open_mode argument and their meanings are:

Open mode
ios::in

ios::out

jos::app

ios:.ate

jos::nocreate
jos::noreplace

jos::trunc

Meaning
Opens a file for read

Opens a file for write

Appends new data to end of file. This implies
ios::out

A seek to the end of file is performed after the file
is opened. This does not imply ios::out

Returns an error if the file does not exist
Returns an error if the file already exists
If a file exists, truncates its previous content. This

mode is implied with ios:out if it is not specified
with ios::app or ios;:ate

The prot argument specifies the default access permission to be assigned to a file if it is
created by the constructor function. The default value filebuf: :openprot is 0644, which means
read-write for a file owner, and read-only for anyone else. This argument value is not used
when a file to be opened by the constructor already exists.

The following sample statements illustrate the use of the ifstream and ofstream classes.
In the example, a file called from is opened for read, and another file called to is opened for
write. If both files are opened successfully, the content of the from file is copied to that of the
to file. If either file cannot be opened successfully, an error is flagged:

ifstream source ("from”);

ofstream target("to");
if (!source || itarget)

cerr << “Error: File ‘from’ or 'to’ open failed\n";
else for (char c=0; target && source.get(c);)

target.put(c);

Besides the member functions inherited from the iostream classes, the ifstream,
ofstream, and fstream classes also define their own specific functions:

77

Chap. 3. The File I/O classes

Function Meaning
void open(const char* fname, int mode, int prot=openprot)
Attaches the stream object to the named file

void close() Closes the file to which the stream object is at-
tached

void attach(int fd) Attaches the stream object to the stream referenced
by the file descriptor fd

filebuf* rdbuf() Returns a filebuf array associated with the stream
object

The following is a simple program to illustrate the use of the open, close, and attach
functions that are unique to the fstream classes:

#include <iostream.h>
#include <fstream.h>
int main(int argc, char *argv[])

{
ifstream source;
if (argc ==1 Il *argv[1]=="-")
source.attach(0); // attach to stdin
else source.open(argv(1],ios::in);
if (source.rdbuf()->is_open)
source.close(); // Close the file if it is opened
}

Finally, random file /O may be performed using the seekg and tellg functions that the
Jstream classes inherited from the iostream classes. The following example statements illus-
trate how these functions are used:

fstream tmp("foo*,ios::inlios::out);

streampos pos = tmp.telig(); // remember file location
iﬁwp.seekg(pos); /I return to previous location
ian.seekg(-m, ios::end); // Goto 10 bytes from EOF
tmp.seekg(0, ios::beg); // Rewind to beginning of file
tmp.seekg (20, ios::cur); /l Move 20 byte ahead

78

Chap. 3. The strstream Classes

3.4 The strstream Classes

The <strstream.h> header defines the istrstream, ostrstream, and strstream classes for
incore formatting. These classes provide functions that are equivalent to the sprintf and
sscanf C library functions. The advantages of using these classes over the sprintf and sscanf
functions are that these classes may be overloaded to work with user-defined classes and they
allow the C++ compiler to do type-checking on programs at compile time.

The istrstream class is derived from the istre class, and it enables users to extract
formatted data from a character buffer. The ostrstream class is derived from the ostream
class, and it enables users to insert formatted data into a character buffer. Finally, the str-
stream class is derived from both the istrstream and ostrstream classes. It enables users to
extract and insert format data with a character buffer.

The istrstream, ostrstream, and strstream classes do not declare any member functions
that are unique to their classes. The following is an example of incore formatting using these
strstream classes:

J/ source module: strstream.C
#include <iostream.h>
#include <strstream.h>

main()

{
double dval;
int ival;
char wd[20];

static char buf[32] = “45.67 99 Hello”;

// dval= 45.67, ival=99, wd="Hello"
istrstream(buf) >> dval >> ival >> wd;
ostrstream(buf,sizeof(buf)) << ival << * <-“ << dval
<< ‘) << wd <<’\0’;
cout << buf << endl; /1 "99 <- 45.67 Hi"

In the above example, the 47.67, 99, and Hello data are extracted from the buf variable
and assigned to the dval, ival, and wd variables, respectively, via the istrstream class. This is
similar to using the C sscanf function. In the statement. a temporary istrstream class object is
created, and it uses buf as its internal buffer to perform data extraction.

The dval, ival, and wd variables values are assigned to buf again in a different format,
via the ostrstream class. This is similar to using the C sprintf function. Note that a temporary
ostrstream class object is created by the statement, and it uses buf as its internal buffer for

79

Chap. 3. The strstream Classes

data insertion. Finally, the terminating *\0” character in the statement is needed so that the
format string stored in buf is NULL-terminated.

The compilation and sample output of the program is:

% CC strstream.C
% a.out
99 <- 45.67,Hi

If no buffer is supplied to an ostrstream object’s constructor, the object keeps an inter-
nal dynamic array to store the input data. Users can access this array by invoking the ostr-
stream.:str function. However, once the ostrstream: :str function is called, the dynamic array
is “frozen,” which means that no more data can be inserted into the array via the strstream
object, and the users are responsible for deallocating the array when done.

The following example illustrate the uses of the ostrstream::str function:

// source module: strstream.C
#include <iostream.h>

#include <fstream.h>
#include <strstream.h>

int main(int argc, char *argv[])
{
fstream source;
if (argc ==1 Il *argv[1]=="-)
source.attach(0); // attach to stdin
else source.open(argv{1],ios::in);

// Read the input stream and store into internal array
ostrstream str;
for (char ¢c=0; str && source.get(c);)

str.put(c);

// Get the internal array
char *ptr = str.str();

80

Chap. 3. Summary

// Doing something to the data in the array

// Deallocate the array
delete ptr;

// Close the input stream
source.close(); . // Close the file

3.5 Summary

This chapter reviews the C++ I/O stream classes. These classes and their system-
defined objects (cin, cout, cerr, and clog) are used extensively in most C++ programs because
they offer more type-checking and are extensible in supporting user-defined classes. Thus, it
is advantageous to know the basic, as well as advanced, features of these classes.

The next chapter is a review of some advanced standard C library functions. These
functions are not covered by the C++ standard classés or by the UNIX and POSIX applica-
tion program interface functions, but they are very useful to know and should help users in
development of advanced system applications.

81

CHAPTER

Standard C Library Functions

C defines a set of library functions that have no direct correspondence in C++ stan-
dard classes or in UNIX and POSIX APIs. These functions provide the following services:

 Data manipulation, conversion, and encryption

+ Enabling definition of variable argument functions by users
¢ Dynamic memory management

» Date and time processing

 Obtaining system informatior

The major advantages of using the standard C library functions are portability and low
maintenance of users’ applications. This is because most systems (UNIX or others) that sup-
port C provide the same set of standard C library functions. These functions should have the
same function prototypes and behave the same on differen. systems. Furthermore, these
library functions do not change constantly; thus, programs that use them are easy to maintain.
Finally, ANSI C has standardized some of these library functions, further ensuring the avail-
ability of these functions on all ANSI C-compliant sysiems. Thus, C library functions should
be used where applicable to reduce application development time and costs.

This chapter depicts the major ANSI C-defined library functions and a few library
functions that are non-ANSI C standard but are widely available on all UNIX systems. The
objective of describing these functions is to make users aware of them so that they can make:
use of these functions to reduce their applications development time and improve the porta-
bility and maintenance of their programs.

83

Chap. 4. <stdio.h>

If portability and maintenance are major concerns of your -applications, it is recom-
mended that readers use the C++ standard classes and standard C library functions as much
as possible, and use the system APIs only when necessary. However, if your applications are
time-critical or require extensive kernel interfacing, use the system APIs more often than the
C++ standard classes and standard C library functions.

The standard C library functions are declared in a set of header files that are commonly
placed in the /usr/include directory on UNIX systems. The archive and shared libraries that
contain the object code of these library functions are the libc.a and libc.so, respectively.
These libraries are commonly placed in the /usr/lib directory on UNIX systems.

The next few sections describe the ANSI C library functions as defined in the following
header files:

* <stdio.h>

¢ <stdlib.h>
¢ <string.h>
* <memory.h>
¢ <malloc.h>
¢ <time.h>

¢ <assert.h>
* <stdarg.h>
¢ <getopt.h>
* <setjmp.h>

Besides the above, the following headers are not defined in ANSI C but are available on
most UNIX systems:

¢ <pwd.h>
* <grp.h>
* <crypt.h>

These header files declare functions which aid users in accessing UNIX systems’ user
and group account information, and they are defined in the libc.a library on UNIX systems.
These headers are also described in this chapter, in case users find them useful in application
development.

4.1 <stdio.h>

The <stdio.h> header declares the FILE data type that is used to reference stream files
in C programs. There are also a set of macros and functions to support the manipulation of

84

Chap. 4. <stdio.h>

stream files. Examples of these macros and functions, which should already be familiar to
readers are:

Stream function/macro Uses

fopen : Opens a stream file for read and/or write

fclose Closes a-stream file

fread Reads a block of data from a stream file

fgets ' Reads a line of text from a stream file

fscanf Reads formatted data from a stream file

fwrite Writes a block of data to a stream file

fputs Writes a line of text to a stream file

fprintf Writes formatted data to a stream file

fseek : Re-positions the next read or write location in a
stream file

ftell Returns the current location in a stream file where

the next read or write will occur. The return value
is the number of bytes offset from the beginning of

the file
freopen Re-uses a stream pointer to reference a new file
fdopen Converts a file descriptor to a stream pointer
feof A macro which returns a non-zero value if end-of-
file is found in a given stream file, or a zero value
otherwise
ferror A macro which returns a non-zero value if an error

or end-of-file has been encountered in a given
- stream file, or a zero value otherwise
clearerr A macro which clears the error and end-of-file
flags of a given stream file
fileno A macro which returns the file descriptor associ-
ated with a given stream file.

The freopen function is often used to redirect the standard input or standard output of
an executed program. The function prototype is:

FILE* freopen (const char* file_name, const char* mode, FILE* old_stream);

The file_name argument is a path name of a new stream to be opened. The mode argu-
ment specifies the new stream is to be opened for read and/or write. This is the same argu-
ment as that used in fopen, and the new stream must be opened for access consistent with that
of the stream, as referenced by the old_stream argument. For example, if an old stream is

85

Chap. 4. <stdio.h>

opened for read-only, so must the new stream be opened. The same is true if the old stream is
write-only or read-write. The function attempts to open the new stream of the specified access
mode. If the new stream is opened successfully, the old stream is closed, and the stream
pointer old_stream is set to reference the new stream. If the new stream cannot be opened, the
old_stream is closed regardless. The function returns the old_stream value if it succeeds, or a
NULL value if it fails.

The following example program emulates the UNIX cp (copy file) command. The pro-
gram takes two file path names as arguments, and it copies the content of the file specified by
the first argument (argv/1]) to the file specified in the second argument (argv/2]). Note that
instead of using two stream pointers to reference the two files, the stdin and stdout stream
pointers are set to reference the source and destination files, respectively, via the freopen
function. Then, data in the source file is read via the gets library function and is written to the
destination file via the puts library function:

#include <stdio.h>
int main(int argc, char* argv]])

{
if (arge!=3) {
cerr << “usage: “ << argv[0] << “ <src> <dest>\n";
return 1;
}
(void)freopen(argv[1], “r", stdin); // stdin references source file
(void)frepen(argv([2],"'w”,stdout); // stdout references dest. file
for (char buf{256]; gets(buf);)
puts(buf);
. return 0;
}

The fdopen function converts a file descriptor to a stream pointer. File descriptors are
used in UNIX APIs to access files. Unlike stream pointers, they do not provide data buffering
services. If users wish to do /O data buffering, they may use this function to convert a file
descriptor to a stream pointer. The fdopen function prototype is:

FILE* fdopen (const int file_desc, const char* mode);

The file_desc argument is a file descriptor to be converted. The mode argument speci-
fies the access mode of the new stream pointer to be created. The possible mode values are
the same as those for the fopen call and must be consistent with the way the file_desc descrip-
tor was opened. Specifically, if a given file descriptor is opened for read-only, the mode value

86

Chap. 4. . <stdio.h>

should be “r.” Similarly, if a given file descriptor is for write-only, the mode value should be
“y.” The function returns a new stream pointer if it succeeds or a NULL pointer if it fails.
One possible cause of failure is the mode argument value is inconsistent with the a file_desc
descriptor access mode.

The following sample function illustrates one possible implementation of the fopen
function by using fdopen:

" FILE* fopen'(const char* file_name, const char* mode)

(.
int fd, access_mode;
~ * convert mode to integer valued access_mode */
if ((td = open(file_name, access_mode, 0666)) <0)
return NULL;
return fdopen (fd, mode);

}

In the above example, the character string mode argument is converted to an integer- .
valued access mode flag. The open API is then called to open a file that is named by the
file_name argument, and the returned file descriptor is stored in fd. The function converts fd
to a stream pointer via the fdopen call and returns that stream pointer as the return value.

The fdopen call is also used in other situations, such as the implementation of the popen
function. This will be depicted in Chapter 8.

Finally, the <stdio.h> header also declares the popen and pclose functions. These func-
tions are used to execute a shell command within a user program. This is very useful in
enabling user programs to perform system functions conveniently, and some of these func-
tions cannot be done via any standard library function or system APL

The function prototypes of the popen and pclose functions are:

FILE* popen (const char shell_cmd, const char* mode),

int pclose (FILE* stream_ptr),

The shell_cmd argument of the popen function is a user-defined shell command. It can
be any command that can be executed on 2 command line by a shell. Users may specify input
redirection, output redirection, or command pipes in the command. In UNIX, the function
invokes a Bourne shell to execute the command. Furthermore, the mode argument value may

87

Chap. 4. ’ <stdiib.h>
be “r” or “w”, which specifying the function to return a stream pointer for users to read the
standard input data or to write data to the standard output, respectively, of the to-be-executed
command. The function returns NULL if the command cannot be executed, or a stream
pointer if it succeeds. Note that the popen function creates an unnamed pipe for passing data
between a process calling popen and the executed command. Unnamed pipes are discussed in
Chapter 7. :

The pclose function is called to close a stream pointer that is obtained from popen. It
also makes sure the executed command is terminated properly. The implementation of the
popen and pclose function is explained in Chapter 8, when the UNIX process APIs are dis-
cussed.

The following example program, ps.C, displays all executing processes on a UNIX sys-
tem that are owned by the user root:

#include <stdio.h>
int main ()
{
" execute the command */
FILE * cmdp = popen(“ps -ef | grep root””r");

if (lemdp) {
perror (“popen”);
return 1;

}

char resuit [256] ;
/* now read the “grep” command outputs */
while (fgets(result, sizeof(result), cmdp))

fputs(result, stdout); // echo each line read
pclose(cmdp); // close the stream
return O;

4.2 <stdlib.h>

The <stdlib.h> header declares a set of functions for data conversion, random number
generation, get and set shell environment variables, program execution control, and execution
of shell commands. These functions were traditionally declared in the <stdio.h> header, but
because they do not involve stream manipulation, they are grouped into a separate header by
the ANSI C standard.

Chap. 4. <stdlib.h>

The system function declared in the <stdlib.h> header performs a function similar to the
popen function, except that users can access the standard output or standard input of the exe-
cuted command. The function prototype of the system function is:

int system (const char* shell_cmd);

The shell_cmd argument is a character string that contains a user-defined shell com-
mand. The command may be anything that is legally entered on a shell command line of a
given system. Furthermore, input redirection, output redirection, and command pipes may be
specified in a shell_cmd. In UNIX, the function invokes a Bourne-shell to execute the com-
mand. The function returns a zero value if it succeeds and a nonzero value if the execution of
a given command fails. For example, the following statement executes the shell commands:
cd /bin ; Is -1 sort -b | we > /tmp/vec.out:

if (system (“cd /bin; Is -I | sort -b | we > imp/we.out”) == -1)-
perror(“system *);

This executes the commands in the same manner as if they were entered in a UNIX
console. Note that because the system function invokes Bourne shell as a subshell to execiite
a shell_cmd, any definition of shell variables or change of work directory in a shell_cmd is
not effective when the system function call returns.

The following mini-shell.C program emulates a UNIX shell. It takes one or more lines
of commands from a user. For each input command line, it calls system to execute the com-
mand. The program terminates when end-of-file is encountered in the standard input:

#include <iostream.h>
#include <stdlib.h>
int main()
A
char cmd[256];
for () {
/* show a mini-shell prompt */
cout << “*> “ << flush;
/* Get a user’s input. Quit if EOF */
if (cin.getline(cmd, 256)) break;

/* Execute the user command */
if (system(cmd) == -1) perror(cmd),

89

Chap. 4. <stdiib.h>

return O;

The following functions are defined in the <stdlib.h> header and convert data from
character strings to other C data values, such as double, long, int, etc.:

int atoi (const char®* str_val);
..double atof (const char str_val); .
- long - atol (const char* str_val);
double . strtod(const char* str_val, char ** endptr)
long strtol (const char* str_val, char** endptr, int radix),
unsigned long strtoul (const char* str_val, char**endptr, int radix); -

Each of the above functions converts a numerical string specified in str_val into its
actual data value (float, double, long, or unsigned long) and returns that value. If the endptr
argument is present and its value is an address of a character pointer, that pointer is set to
point to a location in str_val where the conversion ends. If the conversion fails, the pointer is
set to str_val, and the function returns a zero value. The radix argument specnﬁes the base of
the numerical strmg stored in str_val.

C and C++ provide the sscanf function and the istrstream class, respectively, to perform
operations similar to the above conversion functions. For example. the atol function can be
written as any one of the following:

/* Cc method */
#include <stdio.h>
long atol (const char* str_vat)
{
fong x;
if (sscanf(str_val, "%Id", &x) ==1)
return x; \
else return 0;

/* C++ method */
#include <strstream.h>
long atol (const char* str_val)
{
long x;
istrstream(str_val,strien(str_ val)+1)>> X;

90

Chap. 4. <stdiib.h>

return x;

The rand and srand functions, as declared in the <stdlib.h> header, perform random
number generation. Their function prototypes are:

int rand (void);
void srand (unsigned int seed),

The srand function obtains a seed number from the user and sets a starting point for a
new sequence of pseudorandom numbers to be returned on each subsequent call of rand. The
sequence of pseudorandom numbers returned by rand may be repeated if srand is called
again with the same seed value. If rand is called before srand, the default seed value is 1. The
integer numbers returned by rand are in the range of 0 to 213 _ 1. If a user wishes to restrict
the pseudo-random numbers returned to be in the range of 1 to N (where N is any arbitrary
positive integer value), the rand call may be modified as: '

int random_num =rand() % N + 1;
The following example function returns a random number that is unique on éach call:

#include <time.h>

int get_rand()

{
srand((unsignedjtime(0));
return rand();

}

In the above example, the time function is declared in the <time.h> header. It returns an
integer that is the number of seconds elapsed since January 1, 1970 up to the current moment.
(This function is described in more detail in a later section when the <time.h> header is dis-
cussed). Because the time function’s return value is unique per call (assuming at least a one-
second interval between any two consecutive calls), the seed to the srand function is also
unique and is, thus, the returned random number from rand. Random numbers are used
extensively in programs that do statistical sampling and analysis.

In addition to the above functions, the <stdlib.h> also declares the following functions
that are used in the termination of executed programs:

o1

Chap. 4. <stdiib.h>

void exit (int status_code);
int atexit (void (*cleanup_fnptr)(void));
void abort (void);

The exit function should be familiar to readers, as it is used to terminate a user’s pro-
gram (a process) and returns an integer exit status code to a calling shell. By UNIX conven-
tion, a status_code value of 0 means that the program’s execution was successful. Otherwise,
the status_code value is nonzero.

The atexit function may be called to register a user-defined function. This function
takes no argument and does not return any value. The function is called by the exit function
and is supposed to do clean-up work before the calling process is terminated. Multiple func-
tions may be registered in a process via multiple atexit function calls, and these functions are
invoked, in an order reversed from that registered, when the containing process calls exit.

The abort function is called when a process is in a panic state. The function terminates
the process, and in UNIX it causes a core file to be generated. A core file is useful in aiding
users to debug an aborted process.

Finally, the getenv function is declared in the <stdlib.h> header. This function allows a
process to query a shell environment variable value. There is also a putenv function that
allows a process to define a shell environment variable. However, the putenv function is not
defined in ANSI C, even though it is available on most UNIX systems. The function proto-
types of the getenv and putenv functions are:

char* getenv (const char* env_name),
int putenv (const char*env_def);

The env_name argument value to a getenv call is a character string of a shell environ-
ment variable name. The function returns a NULL value if a given environment variable is
undefined.

The env_def argument value to a putenv call is a character string that contains an envi-
ronment variable name, an equal character, and the value to be assigned to the variable. The
function returns a zero value if it succeeds, a nonzero value otherwise.

The following statements show the value of the PATH shell environment variable, then
sets an environment variable CC to have the value of c++:

<string.h>

char* env = getenv(“PATH"),
cout << “'PATH\" value is: " << onv << \n’;
if (putenv(“CC=c++")) cerr << “putenv of CC failed\n”;

4.3 <string.h>

The <string.h> header declares a set of functions for character string manipulations.
These functions are well known to C and C++ programmers and are used in almost every C
program that deals with character strings. The commonly used string functions are:

int

int

int

char*
char*
char*
char*
char*
char*
char*
char*

strlen (const char® str);

strcmp (const char* strl, const char® str2);
strncmp (const char* strl, const char* str2, const int n);
strcat (char* dest, const char® src);

strncat (char* dest, const char* src, const int n); -
strcpy (char® dest, const char* src);

strncpy (char* dest, const char* src, const int n);
strchr (const char* str, const char ch);

strrchr (const char* str, const char ch);

strstr (. const char* str, const char* key);

strpbrk (const char* str1, const char* delimit);

The uses of these string functions are:

Function
strlen

strcmp

strncmp

strcat

strncat

Use

Returns the number of characters of the NULL-ter-
minated str argument. The NULL character is not
counted in the return value

Compares the equality of the str/ and str2 argu-
ments. This function returns zero if the two strings
are the same, nonzero otherwise

Compares up to n characters of the str/ and sir2
argument strings for equality. The function returns
zero if the result is a match, nonzero otherwise
Concatenates the src argument string to the dest
argument string. The resultant dest string is
appended a NULL character. The function returns
the address of the dest argument string
Concatenates up to n characters of the src argu-
ment string to the dest argument string. The result-

93

Chap. 4.

strcpy

strncpy

strchr

strrchr

strstr

strpbrk

<string.h>

ant dest string is NULL-terminated. The function
returns the address of the dest argument string
Overrides the content of the dest argument string
by the src argument string, including the terminat-
ing NULL character. The function returns the
address of the dest argument string

Overrides the first n characters of the dest argu-
ment string by the src argument string. If the src
argument string’s size is equal to or larger than n,
the NULL character is not copied over. The func-
tion returns the address of the dest argument string

Searches the str argument for the first occurrence
of the ch character. The function returns the
address of the ch character in the str string, or
NULL if ch is not found

Searches the str argument for the last occurrence of
the ch character. The function returns the address
of the ch character in the str string or NULL if ch is
not found ’ ~

Searches the str argument for the first occurrence
of the key character string. The function returns the

~ address of the key string in str sting or NULL if the

key string is not found

Searches the str argument for the occurrence of
any character as specified in the delimit argument.
The function returns the address of the matched
character in the str string or NULL if there is no
match

Besides the above functions, the following sections describe a few useful functions that
are not commonly known by C and C++ programmers:

4.3.1 strspn, strcspn

The strsph and strcspn function prototypes are:

const char* strspn (char*str, const char* delimit);
const char* strespn (char*str, const char* delimit);

The strspn function returns the number of leading characters in s¢r that are specified in

Chap. 4. <string.h>

the delimit argument. This function is useful in skipping leading delimiting characters in a
string. The following example returns the address of the next nonwhite space character in the
input argument buf:

#include <string.h>
char* skip_spaces (char” buf)
{

return buf + strspn(buf,” \t\n");

}

The strcspn tunction returns the number of leading characters in str that are not speci-
fied in the delimit argument. This function is useful in finding the next delimiting character in
a character string. The following example returns the next white-space delimited token in the
input argument buf.

#include <string.h>
char* get_token (char” but)

{
char* ptr = buf + strspn(buf,”\n\t"); // find beginning of a token
char *endptr = ptr + strespn(ptr,” \n\t"); / find delimiter after token'
if (endptr > ptr) *endptr =\0’;
if (*ptr)
return ptr; /f return token
else return NULL; // end of string. No token
} .

43.2 strtok

The strtok function prototype is:

const char* strtok (char*str, const char* delimit);

This function breaks the str argument into one or more tokens. Each token is delimited
by characters as specified in the delimit argument. If the str argument is an address of a char-
acter string, the strtok function returns the first token in the string. If, however, the str argu-
ment is a NULL value, the function returns the next token in a previously given string.

This function returns NULL if there are no more tokens to be returned from a string.

%

Chep. 4. <string.h>

The following example breaks a string into tokens that are delimited by white-space
characters. Each token obtained is printed to the standard output:

#include <iostream.h>
#include <string.h>
int main (int argc, char* argv[])

{
while (--argc > 0)
for (char* tok; tok = strtok(argvfargc], " \n\t”); argv[argc]=0)
\ cout << “tok: “ << tok << endl;
}

Note that the strtok function modifies the input str argument by replacing delimiting
characters after tokens in str with the NULL character. Users who wish to reuse character
strings to be parsed by strtok should make a copy of these strings so that they can use the cop-
~ led strings later.

The following example illustrates a possible implementation of the strtok function.
Note that the function has a static pointer, iptr; to remember where to parse the next token in
either a new or an old string. Furthermore, if the function finds a delimiting character after a
token, it replaces the delimiter by a NULL character. Thus, the function modifies the input
character string as it extracts tokens from it.

#include <string.h>
char* my_strtok (char* str, const char* delimit)

{

static char* Iptr;

if(tr) { // start parsing a new string
str += strspn(str,delimit); /I skip leading delimiters
if ("str) return NULL; // done if it is a NULL string
Iptr = str;

}

else (liptr) /l continue to parse old string
return NULL,; // return if no more token

char* tokn = Iptr + strspn(Iptr, “ \t\n"); // skip leading delimiter
Iptr = tokn + strcspn(tokn,” \t\n"); // find next delimiter
if (“tokn && Iptr > tokn)

*Iptr++ =\0"; // NULL-terminate token

Chep. 4. <string.h>

else Iptr = NULL; // find last token in a string
return *tokn ? tokn : NULL,; // return token, if any

4.3.3 strerror

The strerror function prototype is:

const char* strerror (int ermo); -

This function can be used to get a system diagnostic message. The ermo argument
value may be any error code as defined in the <sys/ermo.h> header file, or may be the global
ermo variable. The global errno variable is set whenever a system API is called, and its value
is zero if the API execution is successful, nonzero otherwise.

The return character string is read-only and should not be deallocated by users.

The perror function may be called to print a system diagnostic message if any system
API call fails. The strerror function allows users to define their own version of the perror
function.

The following example depicts one possible implementation of the perror function
using strerror:

#include <iostream.h>
#include <string.h>

void my_perror (const char* msg_header)

{ .
if (msg_header && strlen(msg_header)) / print if it is defined by a user
cerr << msg_header << “:“ << strerror(ermo) << endl;
else cerr << strerror(errno) << endl;
}

/* test program for my_perror function */
int main(int argc, char* argv(])
{
FILE *fp;
while (--argc > 0) // for each cmd line argument

97

Chap. 4. <memory.h>

if ((fp = fopen(*++argv, r"))) / tp=0 if open fails
my_perror(*argv); // print a diagnostic
else fclose (fp); /I close file if is opened OK
return O;

4.4 <memory.h>

The <memory.h> header declares a set of functions for byte stream manipulations.
These functions are more similar to the string functions, except that they have a more general
purpose and can be used for noncharacter string object manipulation. For example, one can
use these functions to initialize, compare, and copy struct-typed objects.

The functions declared in the <memory.h> header are:

void* memset (const void* memp, int ch, size_t len);

int memcmp (const void* meml, const void* mem2, size_t len);
void* memcpy (void* dest, const void* src, size_t len);

void* memccpy (void* dest, const void* src, const int ch, size_t len);

void* memchr (const void* memp, const int ch, size_t len);

The memset function initializes the first len bytes of a memory region pointed to by
memp. The memory is initialized with the ch byte throughout. The function returns the
address of memp.

The following statements illustrate the initialization of a struct stat-typed variable to
contain all NULL data:

struct stat *statp = new stat;
if (statp)
(void)memset((void*)statp, NULL, sizeof(struct stat));

The bzero function in BSD UNIX initializes a memory region to all zero bytes. This
function may be implemented via the memset function as:

void bzero (char *‘memp, int len)

{

(void) memset(memp, NULL,(size_t)len);

98

Chap. 4. <memory.h>

The memcemp function compares the equality of the first len bytes of two memory
regions pointed to by mem] and mem2. The function returns zero if the two memory regions
are identical in the first len bytes, a positive value if the mem/ region contains data that are
lexicographically greater than those of mem2, or a negative value if the mem/ region contains
data that are lexicographically less than those of mem2.

The following statements compare the equality of two struct .§tat-typed variables:
int cmpstat (struct stat™ statp1, struct stat* statp2)

{

return memcmp((void*)statp1, (void*)statp2, sizeof(struct stat)),

The stremp function may be implemented via the memcmp function as follows:

int my_strcmp (const char* str1, const char* str2)

{

int len1 = strlen(str1), len2 = strlen(str2);

if (len1 > len2) len1 = len2;

return memcmp((void*)str1, (void*)str2, len1);
}

Furthermore, the BSD UNIX bcmp function may also be implemented via the memcmp
function:

#define bcmp (s1,82,n) memecmp((void*)s1, (void*)s2, (size_t)n)

The memcpy function copies the first len bytes of data from the memory region pointed
to by src to the memory region pointed to by dest. The function returns the address of the dest
memory region.

The BSD UNIX bcopy function may also be implemented via the memcpy function:

#define bcopy (src, dest, n) memcpy((void*)dest, (void*)src, (size_t)n)

Note that the bcopy, bemp, and bzero functions are not defined in the ANSE C standard,

but they are widely used in UNIX system programs.

99

Chap. 4. <malioc.h>

The memcpy function may be used to implement the strcpy function:

#define strcpy(dest, src) -\
memccpy((void*)dest, (void*)src, \0', (size_t)strien(src))

The memccpy function copies data from a memory region pointed to by src to a mem-
ory region pointed to by dest. The function either copies the first len bytes of data from src to
dest or wait until the ch byte that is found within the first len byte of src is copied to dest.

The memccpy function may be used to implement the stmcpy function:

#define strncpy(dest, src, n)\
memccpy ((void*)dest, (void*)src, \0', (size_t)n)

Finally, the memchr function searches the first len byte of a memory region pointed to
by memp and returns the address of the first occurrence of ch in that region, or NULL if there
is no match. The memchr function may be used to implement the strchr function:

#define strchr(str,ch) memchr((void*)str, ch, (size_t)strien(str))

4.5 <malloc.h>

The <malloc.h> header declares a set of functions for dynamic memory allocation and
disposal. These functions are not used extensively by C++ programmers, as they use the new
and delete operators to perform the same functions. However, the realloc function declared in
the <malloc.h> header can be used to adjust the size of any dynamic memory, and this feature
is not provided by the C++ new operator. This section explains in detail the use of realloc.

The functions declared in the <malloc.h> header are:

void* malloc (const size_t size),

void* calloc (const size_t num_record, const size_t size_per_record);
void free (void* memp);

void* realloc (void* old_memp, const size_t new_size);

The uses of malloc, calloc, and free should be familiar to users already. Specifically, the
following statements both allocate a dynamic memory of size 1048 bytes:

char* mem1 = (char*)malloc(1048)); /I C style

100

